
– 4 –

CONTENTS

Page

111
Scope

2
Reference documents
11
3
Terms, definitions, and abbreviations
11
3.1
OPC UA Part 1 terms
11
3.2
OPC UA Part 3 terms
12
3.3
OPC UA Part 5 terms
12
3.4
OPC UA Alarms and Condition terms
12
3.4.1
Acknowledge
12
3.4.2
Alert
12
3.4.3
Cleared
12
3.4.4
Disable
13
3.4.5
Operator
13
3.4.6
Raised
13
3.4.7
Refresh
13
3.4.8
Reset
13
3.4.9
Retain
13
3.4.10
Shelving
13
3.4.11
Standing
13
3.4.12
Suppress
13
3.5
Abbreviations and symbols
13
3.6
Used data types
13
4
Concepts
14
4.1
General
14
4.2
Conditions
14
4.3
ConditionRefresh
15
4.4
Condition Comments
16
4.5
Condition Severity and Status
17
4.6
Acknowledgeable Conditions
17
4.7
Dialogs
19
4.8
Alarms
20
4.9
Multiple Active States
22
4.10
Grouping Conditions
23
4.11
Condition Instances
23
4.12
Alarm and Condition Auditing
23
5
Model
24
5.1
General
24
5.2
Condition Model
25
5.2.1
General
25
5.2.2
Condition Model Events
26
5.2.3
BaseConditionType
27
5.2.4
ConditionRefresh Method
28
5.2.5
Condition Refresh Related Events
29
5.2.5.1
RefreshStartEventType
29
5.2.5.2
RefreshEndEventType
29
5.2.5.3
RefreshRequiredEventType
29
5.2.6
AuditConditionEventType
29
5.2.7
ConditionType
30
5.2.8
ConditionStateMachineType
30
5.2.9
ConditionGroupType
32
5.2.10
Disable Method
32
5.2.11
Enable Method
33
5.2.12
AuditConditionEnableEventType
33
5.2.13
StatusStateMachineType
34
5.2.14
SeverityStateMachineType
35
5.2.15
AddCommentByEventIds Method
36
5.2.16
CommentStateMachineType
36
5.2.17
AddComment Method
38
5.2.18
AuditConditionCommentEventType
38
5.3
Dialog Model
39
5.3.1
General
39
5.3.2
DialogConditionType
40
5.3.3
OKDialog Overview
40
5.3.4
OkDialogType
41
5.3.5
OkDialogStateMachineType
41
5.3.6
OkDialogSubStateStateMachineType
41
5.3.7
Ok Method
42
5.3.8
OKCancelDialog Overview
43
5.3.9
OkCancelDialogType
43
5.3.10
OkCancelDialogStateMachineType
44
5.3.11
OkCancelDialogSubStateStateMachineType
44
5.3.12
Cancel Method
45
5.3.13
YesNoCancelDialog Overview
46
5.3.14
YesNoCancelDialogType
47
5.3.15
YesNoCancelDialogStateMachineType
47
5.3.16
YesNoCancelDialogSubStateStateMachineType
47
5.3.17
No Method
49
5.3.18
AuditConditionDialogEventType
50
5.4
Acknowledgeable Condition Model
51
5.4.1
General
51
5.4.2
AcknowledgeableConditionType
51
5.4.3
AcknowledgeByEventIds Method
53
5.4.4
AuditConditionAckEventType
54
5.4.5
ConfirmByEventIds Method
54
5.4.6
AuditConditionConfirmEventType
55
5.4.7
AcknowledgeableConditionStateMachineType
55
5.4.8
AcknowledgeStateMachineType
57
5.4.9
Acknowledge Method
58
5.4.10
AuditAcknowledgeEventType
59
5.4.11
CommentPreviousStateMachineType
59
5.4.12
ConfirmedStateMachineType
61
5.4.13
Confirm Method
62
5.4.14
AuditConfirmedEventType
63
5.4.15
AckPreviousStateMachineType
63
5.5
.Alarm Model
65
5.5.1
General
65
5.5.2
AlarmConditionType
66
5.5.3
AlarmStateMachineType
67
5.5.4
AlarmActiveStateMachineType
67
5.5.5
ShelvedStateMachineType
69
5.5.6
SuppressStateMachineType
72
5.5.7
ManualShelve Method
74
5.5.8
Unshelve Method
74
5.5.9
TimedShelve Method
75
5.5.10
OneShotShelve Method
75
5.5.11
ShelvedAuditEventType
76
5.5.12
ProcessAlarmType
76
5.5.13
Common StateMachines
77
5.5.13.1
Overview
77
5.5.13.2
MultiActiveStateMachineType
77
5.5.13.3
Extending the Alarm model
79
5.5.13.4
AlarmLimitType
80
5.5.14
Level Alarm
80
5.5.14.1
LevelAlarmType
80
5.5.14.2
Single Level
80
5.5.14.2.1
SingleLevelAlarmType
80
5.5.14.2.2
LevelGroup
81
5.5.14.3
Multiple Level
82
5.5.14.3.1
MultiLevelAlarmType
82
5.5.14.3.2
MultiLevelAlarmStateMachineType
83
5.5.14.3.3
MultiLevelAlarmActiveStateMachineType
83
5.5.15
DeviationAlarm
83
5.5.15.1
DeviationAlarmType
83
5.5.15.2
Single Deviation
84
5.5.15.2.1
SingleDeviationAlarmType
84
5.5.15.2.2
DeviationGroup
85
5.5.15.3
Multiple Deviation
85
5.5.15.3.1
MultiDeviationAlarmType
85
5.5.15.3.2
MultiDeviationAlarmStateMachineType
87
5.5.15.3.3
MultiDeviationAlarmActiveSubStateMachineType
87
5.5.16
Rate Of Change
87
5.5.16.1
RateOfChangeAlarmType
87
5.5.16.2
Single Rate of Change
87
5.5.16.3
SingleRateofChangeAlarmType
87
5.5.16.3.1
RateOfChangeGroup
88
5.5.16.4
Multiple Rate Of Change
89
5.5.16.4.1
MultipleRateOfChangeAlarmType
89
5.5.16.4.2
MultiRateOfChangeAlarmStateMachineType
90
5.5.16.4.3
MultiRateOfChangeAlarmActiveSubStateMachineType
90
5.5.17
Digital Alarms
91
5.5.17.1
DigitalAlarmType
91
5.5.17.2
OffNormalAlarmType
91
5.5.17.3
TripAlarmType
92
5.5.17.4
ChangeofStateType
92
5.6
Additional Types used for Categorization
92
5.6.1.1
MaintenanceAlarmType
92
5.6.1.2
SystemAlarmType
93
6
Alarm specific uses of Services
93
6.1
Overview
93
6.2
Historical Access
93
6.3
Data Subscriptions
94
6.4
Event Subscriptions
94
6.5
Common DataTypes for Method Calls
94
6.5.1
StatusResponseDataType
94
7
Appendix - A - Audit Events
95
7.1
Appendix - B -Condition Model Example
96
7.1.1
General
96
7.1.2
Example of Type Model
97
7.1.2.1
Introduction
97
7.1.2.2
Sensors
98
7.1.2.2.1
Introduction
98
7.1.2.2.2
SensorType
98
7.1.2.2.3
SensorType
98
7.1.2.3
Controllers
99
7.1.2.3.1
Introduction
99
7.1.2.3.2
Temperature Controller
99
7.1.2.3.3
Level Controller
100
7.1.2.4
Physicals Devices
100
7.1.2.4.1
Introduction
100
7.1.2.4.2
PipeType
100
7.1.2.4.3
PumpType
101
7.1.2.4.4
TankType
101
7.1.2.5
Summary
102
7.1.3
Example of Instance Condition Model
104
7.1.4
Example of Instance Alarm model
107

Figures

15Figure 1 – Condition State Machine Model

Figure 2 - Comment State Machine Model
17
Figure 3 - Severity and Status State Machine Models
17
Figure 4 - AcknowledgeableConditions State Machine Model
18
Figure 5 – Acknowledge State Model
18
Figure 6 – Confirmed Acknowledge State Model
19
Figure 7 – OK Dialog State Model
19
Figure 8 – YesNoCancel Dialog State Model
20
Figure 9 – Alarm State Machine Model
21
Figure 10 – Multiple Active States Example
22
Figure 11 - Example Condition and Condition State Machine Hierarchy
25
Figure 12 - Condition Model
26
Figure 13 - Status State machine
34
Figure 14 - Severity State machine
35
Figure 15 – CommentStateMachineType Model
37
Figure 16 - Dialog Model
39
Figure 17 - OkDialogType Model and State Machine
40
Figure 18 - OkCancelDialog Type Model and State Machine
43
Figure 19 - YesNoCancelDialog Type Model and State Machine
46
Figure 20 – AcknowledgeableCondition Model
51
Figure 21 - AcknowledgeableConditionStateMachine Overview
52
Figure 22 -AcknowledgeableConditionStateMachine
56
Figure 23 – AcknowledgeStateMachine Model
58
Figure 24 - CommentPreviousStateMachineType Model
60
Figure 25 – Confirmed State Machine Type
61
Figure 26 – AckPreviousStateMachineType Model
64
Figure 27 - Alarm Model
66
Figure 28 - AlarmActiveStateMachine
68
Figure 29 - Shelved State Machine Model
70
Figure 30 - Shelve state transitions
71
Figure 31 - Suppressed State machine
73
Figure 32 - Process Alarm Type State machine Tree
76
Figure 34 - MultiActiveState Machine
78
Figure 33 - Single Level Alarm type
81
Figure 34 - MultipleLevelAlarm State Machine
82
Figure 35 - Single Deviation Alarm Type
84
Figure 36 - MultipleDeviationAlarm State Machine
86
Figure 37 - Single Rate Of Change Alarm type
88
Figure 38 - MultipleRateOfChangeAlarm State Machine
89
Figure 39 - Digital Alarm Type
91
Figure 40 - Controllers
99
Figure 41 - Custom Type Summary
102
Figure 42 - Condition Example Type Model
103
Figure 43 - Condition Instance Address space example
104
Figure 44 - Condition Dialog Instance Example Address space
105
Figure 45 - Alarm Condition Address space
108

Tables

14Table 1 – Parameter Types defined in Part 3

Table 2 – Parameter Types defined in Part 4]
14
Table 3 – BaseConditionType Definition
27
Table 4 – ConditionRefresh Method Definition
28
Table 5 – ConditionRefresh Method Arguments
28
Table 6 – ConditionRefresh Service Result Codes
29
Table 7 – RefreshStartEventType Definition
29
Table 8 – RefreshEndEventType Definition
29
Table 9 – RefreshRequiredEventType Definition
29
Table 10 – AuditConditionEventType Definition
30
Table 11 – ConditionType Definition
30
Table 12 – ConditionStateMachineType Definition
31
Table 13 – Condition States and Transitions Definition
32
Table 14 – Event Status Codes
32
Table 15 – ConditionGroupType Definition
32
Table 16 – Disable Method Definition
33
Table 17 – Enable Method Definition
33
Table 18 – AuditConditionEnableEventType Definition
33
Table 19 – StatusStateMachineType Definition
34
Table 20 – Status States and Transitions Definition
34
Table 21 – SeverityStateMachineType Definition
35
Table 22 – Severity States and Transitions Definition
35
Table 23 – AddCommentByEventIds Method Definition
36
Table 24 – AddCommentByEventIds Method Arguments
36
Table 25 – AddCommentByEventIds Result Codes
36
Table 26 – CommentStateMachineType Definition
37
Table 27 – CommentStateMachine States and Transitions
38
Table 28 – AddComment Method Definition
38
Table 29 – AddComment Method Arguments
38
Table 30 – AuditConditionCommentEventType Definition
39
Table 31 – DialogConditionType Definition
40
Table 32 – OkDialogType Definition
41
Table 33 – OkDialogStateMachineType Definition
41
Table 34 – OkDialogStateMachineType States and Transitions
41
Table 35 – OkDialogSubStateStateMachineType Definition
42
Table 36 – OkDialogSubStateStateMachineType States and Transitions
42
Table 37 – Ok Method Definition
42
Table 38 – OkCancelDialogType Definition
44
Table 39 – OkCancelDialogStateMachineType Definition
44
Table 40 – OkCancelDialogStateMachineType States and Transitions
44
Table 41 – OkCancelDialogSubStateStateMachineType Definition
45
Table 42 – OkCancelDialogStateMachineType States and Transitions
45
Table 43 – Cancel Method Definition
46
Table 44 – YesNoCancelDialogType Definition
47
Table 45 – YesNoCancelDialogStateMachineType Definition
47
Table 46 – YesNoCancelDialogStateMachineType States and Transitions
47
Table 47 – YesNoCancelDialogSubStateStateMachineType Definition
48
Table 48 – YesNoCancelDialogSubStateStateMachineType States and Transitions
49
Table 49 – No Method Definition
49
Table 50 – AuditConditionDialogEventType Definition
50
Table 51 – AcknowledgeableConditionType Definition
52
Table 52 – AcknowledgeByEventIds Method Definition
53
Table 53 – AcknowledgeByEventIds Method Arguments
53
Table 54 – AuditConditionAckEventType Definition
54
Table 55 – ConfirmByEventIds Method Definition
54
Table 56 – ConfirmByEventIds Method Arguments
54
Table 57 – ConfirmByEventIds Service Result Codes
55
Table 58 – AuditConditionConfirmEventType Definition
55
Table 59 – AcknowledgeableConditionStateMachineType Definition
56
Table 60 – AcknowledgeableConditionStateMachine References
57
Table 61 – AcknowledgeStateMachineType Definition
58
Table 62 – AcknowledgeStateMachine References
58
Table 63 – Acknowledge Method Definition
59
Table 64 – Acknowledge Method Arguments
59
Table 65 – AuditAcknowledgeEventType Definition
59
Table 66 – CommentPreviousStateMachineType Definition
60
Table 67 – CommentPreviousStateMachine States and Transitions
61
Table 68 – ConfirmedStateMachineType Definition
62
Table 69 – ConfirmedStateMachine References
62
Table 70 – Confirm Method Definition
63
Table 71 – Confirm Method Arguments
63
Table 72 – AuditConfirmedEventType Definition
63
Table 73 – AckPreviousStateMachineType Definition
64
Table 74 – AckPreviousStateMachine States and Transitions
65
Table 75 – AlarmConditionType Definition
66
Table 76 – AlarmStateMachineType Definition
67
Table 77 – AlarmStateMachineType States and Transitions
67
Table 78 – AlarmActiveStateMachine Definition
68
Table 79 – AlarmActiveStateMachine States and Transitions
68
Table 80 –ShelvedStateMachine Definition
71
Table 81 – ShelvedStateMachine States and Transitions
72
Table 82 – SuppressStateMachine Definition
73
Table 83 – SuppressStateMachine States and Transitions
74
Table 84 – Shelving Method Definition
74
Table 85 – Unshelve Method Definition
74
Table 86 – TimedShelve Method Definition
75
Table 87 – Arguments of TimedShelving Method
75
Table 88 – TimedShelving Result Codes
75
Table 89 – OneShotShelve Method Definition
75
Table 90 – ShelvedAuditEventType Definition
76
Table 91 – ProcessAlarmType Definition
77
Table 98 – MultiActiveStateMachineType Definition
78
Table 99 – MultiActiveStateMachineType States and Transitions
79
Table 94 – AnalogItemType Definition
80
Table 92 – LevelAlarmType Definition
80
Table 93 – SingleLevelAlarmType Definition
81
Table 94 – LevelGroup Folder Definition
82
Table 95 – MultiLevelAlarmType Definition
83
Table 96 – MultiLevelAlarmStateMachineType Definition
83
Table 97 – MultiLevelAlarmActiveStateMachineType Definition
83
Table 100 – DeviationAlarmType Definition
84
Table 101 – SingleDeviationAlarmType Definition
85
Table 102 – DeviationGroup Folder Definition
85
Table 103 – MultiDeviationAlarmType Definition
86
Table 104 – MultiDeviationAlarmStateMachineType Definition
87
Table 105 – MultiDeviationAlarmActiveStateMachineType Definition
87
Table 106 – RateOfChangeAlarmType Definition
87
Table 107 – SingleRateOfChangeAlarmType Definition
88
Table 108 – RateOfChangeGroup Folder Definition
89
Table 109 – MultiRateOfChangeAlarmType Definition
90
Table 110 – MultiRateOfChangeAlarmStateMachineType Definition
90
Table 111 – MultiRateOfChangeAlarmActiveStateMachineType Definition
90
Table 112 – DigitalAlarmType Definition
91
Table 113 – OffNormalAlarmType Definition
92
Table 114 – TripAlarmType Definition
92
Table 115 – ChangeOfStateType Definition
92
Table 116 – MaintenanceAlarmType Definition
93
Table 117 – SystemAlarmType Definition
93
Table 134 – StatusResponseDataType Structure
94
Table 135 – StatusResponseDataType Definition
94
Table 119 – SensorType Definition
98
Table 120 – FlowTransmitterType Definition
98
Table 121 – TemperatureType Definition
99
Table 122 – LevelSensorType Definition
99
Table 123 – TemperatureControllerTagType Definition
100
Table 124 – LevelControllerTagType Definition
100
Table 125 – PipeType Definition
101
Table 126 – PumpType Definition
101
Table 127 – TankType Definition
101
Table 128 - Dialog Example Event Stream Display Client
106
Table 129 - Dialog Example Event Stream Audit Log Client
106
Table 130 - Dialog Example Event Stream Message Window Client
106
Table 131 - Alarm Example Event Stream Display Client
109
Table 132 - Alarm Example Event Stream Audit Log Client
109
Table 133 - Alarm Example Event Stream Message Window Client
109

OPC Unified Architecture Specification
Part 9: Alarms & Conditions
1 Scope

This specification specifies the representation of Alarms and conditions in the OPC Unified Architecture. Included is the Information Model representation of Alarms and conditions in the OPC UA address space.
2 Reference documents

Part 1 : OPC UA Specification: Part 1 – Concepts, Version 1.01 or later.
OPC UA Specification: Part 1 – Concepts, Version 1.01 or later
Part 2 : Error! Unknown document property name.
Error! Unknown document property name.
Part 3 : Error! Unknown document property name.
Error! Unknown document property name.
Part 4 : Error! Unknown document property name.
Error! Unknown document property name.
Part 5 : Error! Unknown document property name.
Error! Unknown document property name.
Part 6 : Error! Unknown document property name.
Error! Unknown document property name.
Part 7 : Error! Unknown document property name.
Error! Unknown document property name.
Part 8 : Error! Unknown document property name.
Error! Unknown document property name.
Part 11 : Error! Unknown document property name.
Error! Unknown document property name.
Additional external reference used to provide information model suggestions for this document:

EEMUA : 2nd Edition EEMUA 191 - Alarm System - A guide to design, management and procurement (Appendixes 6, 7, 8, 9).
http://www.eemua.co.uk/
3 Terms, definitions, and abbreviations

3.1 OPC UA Part 1 terms

The following terms defined in Part 1 of this multi-part specification apply.

AddressSpace

Alarm

Attribute

Client

Condition

Event

Information Model

Message

Method

MonitoredItem

Node

NodeClass

Notification

Object

ObjectType

Reference

ReferenceType

Server

Service

Subscription

Variable

3.2 OPC UA Part 3 terms

The following terms defined in Part 3 of this multi-part specification apply.

EventType

ModellingRule

Property

3.3 OPC UA Part 5 terms

There are no additional terms defined in Part 5
, but the State Machine used in this document is defined in an Appendix in Part 5. The BaseEventType is defined in in Part 5, and used in this specification.
3.4 OPC UA Alarms and Condition terms

3.4.1 Acknowledge
 “The operator action that indicates recognition of a new Alarm” as defined in EEMUA. The term “Accept” is another common term used to describe Acknowledge, They can be used interchangeably. This document will use Acknowledge.

3.4.2 Alert

“A lower priority Notification than an Alarm, that has no serious consequence if ignored or missed. In Some Industries also referred to as a Prompt or Warning” as defined in EEMUA. In UA the concept of Alerts can be accomplished by the use of severity. Alarms that have a severity below 50 may be considered as Alerts.
3.4.3 Cleared

“Alarm State: An Alarm is Cleared when the Condition has returned to normal” as defined in EEMUA.
3.4.4 Disable
 “An Alarm is disabled when the system is configured such that the Alarm will not be generated even though the base Alarm Condition is present” as defined in EEMUA.
3.4.5 Operator
 “A Member of the operations team who is assigned to monitor and control a portion of the process and is working at the control system’s Consol” as defined in EEMUA.
3.4.6 Raised
“An Alarm is Raised or initiated when the Condition creating the Alarm has occurred” as defined in EEMUA.
3.4.7 Refresh

The concept of providing an update to an event Subscription that provides all Alarms which are considered to be Retained. This concept is further described in EEMUA.
3.4.8 Reset

“An Alarm is Reset when it is in a state that can be removed from the Display list” as defined in EEMUA.
3.4.9 Retain

The opposite of Reset, an Alarm is to be retained when it should not be removed for the Alarm display.
3.4.10 Shelving
 “Shelving is a facility where the Operator is able to temporarily prevent an Alarm from being displayed to the Operator when it is causing the Operator a nuisance. A Shelved Alarm will be removed from the list and will not re-annunciate until un-shelved” as defined in EEMUA.
3.4.11 Standing

“An Alarm is Standing whilst the Condition persists (Raised and Standing are often used interchangeably)’ as defined in EEMUA.
3.4.12 Suppress
 “An Alarm is suppressed when logical criteria are applied to determine that the Alarm should not occur, even though the base Alarm Condition (e.g. Alarm setting exceeded) is present” as defined in EEMUA.
3.5 Abbreviations and symbols

DA
Data Access
UA
Unified Architecture

UML
Unified Modelling Language

XML
Extensible Mark-up Language

3.6 Used data types

The following tables describe the data types that are used through out this document. These types are separated in to two tables. Base data types defined in Part 3 are in Table 1. The base types and data types defined in Part 4 are in Table 2.

Table 1 – Parameter Types defined in Part 3
	Parameter Type

	BaseDataType

	NodeId

	QualifiedName

	LocaleId

	Boolean

	ByteString

	Double

	Duration

	Guid

	Int32

	String

	UInt32

	UtcTime

	XmlElement

	

Table 2 – Parameter Types defined in Part 4
	Parameter Type

	IntegerId[

	

	

	

	

	

	

	

	

	

	

	

	

4 Concepts

4.1 General
This specification extends base eventing which is defined in Part 3, Part 4 and Part 5. This specification defines an Information Model for Conditions, acknowledgeable Conditions, Confirmable Conditions and Alarms. This Information Model can also be extended to support the needs of other domains. For example the concept of Alerts can be easily addressed by extending this specification.
The description of the Information Models represented in this specification makes use of the finite state machine model described in the State Machine appendix in Part 5.
4.2 Conditions

Conditions are defined as extensions of the base Event model. Conditions represent the Conditions of a system or one of its components. For example, a device or block may have an Alarm associated with it. Another example is a batch process that requires a user to confirm some step in the process before proceeding.

Unlike Events, Conditions are not transient. Conditions always exist in some current state. Like Events, Conditions use notifiers as the primary interaction with Clients. In addition to generating Event Notifications, instances of Conditions may also exist in the address space. In order to monitor the current Condition state, Clients can directly subscribe to any instance of a Condition type. This is accomplished by creating data access monitored items of the Attribute values of the Condition.
A Condition’s state is defined by a Condition state machine. The base Condition state machine model is illustrated in Figure 1. This state machine is extended by the various Condition subtypes defined in this specification and also may be extended by vendors. The primary states of a Condition are disabled and enabled. The disabled state is intended to allow Conditions to be turned off at the Server or below the Server (in a device or some underlying system). The enabled state is normally extended by subtype with the addition of a sub-state machine or machines.

[image: image1]

 SHAPE * MERGEFORMAT

 SHAPE * MERGEFORMAT
Figure 1 – Condition State Machine Model

When a Condition enters the Disabled state that transition results in a Condition Event however no subsequent events are generated until the Condition returns to the Enabled state. Condition Event Notification Messages are sent at most state transitions when in the Enabled state.
When a Condition enters the Enabled state, that transition and all subsequent transitions result in Condition Events being generated by the Server.
Derived Condition subtypes extend the Enabled state to include additional properties and sub-state machines. The state transitions of the various state machines that make up a concrete Condition type are specific to each of these derived types.
Client use cases for Conditions can be divided into two categories. The first of these categories is the reception of Condition transitions which is defined by the base eventing model. The second category is unique to Conditions and involves the concept of an “existing” event. The typical use case in this category is the Alarm display Client. In this use case the Client is only interested in displaying Conditions that are in a state that requires attention by a user. This type of client need not be knowledgeable of the specifics of a Server in order to determine which conditions to display. A client can simply read the “Retain” Property as defined by the Condition type.. The determination of an “existing” Condition is made by the Server and is Condition type dependent. The “Retain” Property is set by the Server to define an
“existing” Condition. Clients do not need detailed knowledge of how a Server defines “existing” Conditions the Client simply uses the Retain Property to determine if a Condition exists or has ceased to exist.

The Server will generate audit Events for enable and Disable operations, rather than generating an Event Notification for each Condition instance being enabled or disabled. For more information, see the definition of AuditUpdateMethodEventType or the definition of AuditUpdateStateEventType in Part 5
4.3 ConditionRefresh

Conditions differ from Events such that they are non-transient and therefore have a state. Servers maintain the value of a condition’s state as a result of transitions. Each transition is reported as an Event Notification. The state is also referred to as the “existing” condition The addition of state to the base Event model introduces the need to synchronize Clients with the state maintained by a Server. When a Client establishes a Subscription for Event Notifications with a Server, the Notifications of transitions delivered to the Client will begin at the time of the Subscription. This means that any “existing” Condition (i.e. its transition to its current state) will not be reported to the Client unless Condition’s state again changes after the start of the Subscription. The ConditionRefresh is provided so that Clients may synchronize the state of Conditions.

The BaseConditionType includes a Method called ConditionRefresh. Clients that are interested in existing Conditions use the ConditionRefresh Method to advise the Server to send past Event Notifications of “existing” Conditions. The logic a Server uses to define what constitutes an “existing” Condition is dependent on the Condition type and is detailed in Clause 5.2 of this specification. After a Client calls the ConditionRefresh Method the Server will respond by issuing a special start of Refresh marker Event using the RefreshStartEventType. This Event is followed by the “existing” Conditions that match the filter criteria associated with the monitored item in the Subscription. The Server may also send new Event Notifications interspersed with the “existing” Conditions. After the Server has provided all “existing” Condition Event Notifications, ensuring the Client has the current state, a special end of Refresh marker Event, using the RefreshEndEventType, is issued marking the completion of the Refresh. A Client that wishes to display the current status of Alarms and Conditions (known as a “current Alarm display”) would use the following logic to process Refresh Event Notifications. The Client flags all “existing” Conditions as suspect on reception of the Event of the RefreshStartEventType. The Client adds any new Events that are received during the Refresh without flagging them as suspect. The Client also removes the suspect flag from any “existing” Conditions that are returned as part of the Refresh. When the Client receives an Event of the RefreshEndEventType, the Client removes any remaining suspect Events, since they no longer apply.

The following items should be noted with regard to ConditionRefresh:

· Some Servers may require acknowledgement of all transitions, not just the most recent transition. In this case, the Conditions would be marked with the AckPrevious Boolean flag set to true. This flag requires that all transitions that require acknowledgement be individually acknowledged. For example a Condition with AckPrevious set to true that transitions from normal to Hi and then to HiHi and then back to Hi would require acknowledgement for the original transition to Hi, the transition to HiHi and the finial transition to Hi. When responding to a ConditionRefresh request, the Server would report all three existing Condition Event Notifications.
· Under some circumstances a Server may not be capable of ensuring the Client is fully in sync with the current state of Conditions. For example if the underlying system represented by the Server is Reset or communications are lost for some period of time the Server may need to Refresh itself with the underlying system. In these cases the Server may need to advise the Client that the Client should also Refresh the Event Subscriptions associated with the underlying system. To accomplish the Server triggered Refresh, a Server would issue a special Event of the type RefreshRequiredEventType. A Client receiving this special Event should initiate a Refresh as noted in this clause. To ensure a Client is always informed of Refresh operations, the three special Event types (RefreshEndEventType, RefreshStartEventType and RefreshRequiredEventType) ignore the Event content filtering associated with a Subscription and will always be delivered to the Client.
4.4 Condition Comments

The Alarm and Condition model includes the concept of a comment. A comment is an Operator or User generated Message that is to be associated with a Condition. The Comment state machine is defined as part of the base Condition model as a sub-state for the enabled state. This allows comments to be entered for all state changes. The comment State machine can be affected by definition by other state machines, i.e. if a Method is used to update the state of an Acknowledge state machine, the comment state machine is also affected.

[image: image2]
Figure 2 - Comment State Machine Model

4.5 Condition Severity and Status

The Alarm and Condition model includes a sub-state machine for changes to Attributes that are part of a Condition. This includes changes to the severity
 of a Condition and changes in the status associated with a Condition. The concept of severity is explained as part of the BaseEventType in Part 5. These state machines are defined as part of the base Condition model as sub-states of the enabled state (see Figure 3).

[image: image3]
Figure 3 - Severity and Status State Machine Models
4.6 Acknowledgeable Conditions
AcknowledgeableConditions are defined as extensions of the Conditions. AcknowledgeableConditions include an unacknowledged state which is used to indicate a new Condition that has not been acknowledged.
An overview of the AcknowledgeableConditions state model is illustrated in Figure 4. The enabled state, defined by the ConditionStateMachineType, is extended by adding an acknowledged sub-state of type AcknowledgeStateMachineType.

[image: image4]
Figure 4 - AcknowledgeableConditions State Machine Model

Acknowledgment of the transition may come from the Client or may be due to some logic internal to the Server. For example, acknowledgment of a related Condition may result in this Condition becoming acknowledged, or the Condition may be set up to automatically Acknowledge itself when the acknowledgeable situation disappears.
Two Acknowledge state models are supported by this specification. Either of these state models can be extended to support more complex acknowledgement situations.

The basic Acknowledge state model is illustrated in Figure 5. This model defines an unacknowledged state. The specific state changes that result in a change to the unacknowledged state depend on a Server’s implementation. For example, in the standard Alarm model (section 4.8) the change is limited to a transition to the active state or transitions within the active state. More complex models however can allow for changes to the Acknowledge state when the Condition also transitions to inactive.

[image: image5]

 SHAPE * MERGEFORMAT
Figure 5 – Acknowledge State Model

A more complex state model which adds a confirmation to the basic Acknowledge is illustrated in Figure 6. The Confirmed Acknowledge model is typically used to differentiate between acknowledging the presence of a Condition and having done something to address the Condition. For example a user noticing a motor high temperature indication issues an Acknowledge informing the Server that the high temperature has been observed. The user then takes some action such as lowering the load on the motor in order to reduce the temperature. The user then issues a confirm indicating to the Server that a corrective action has been taken.

[image: image6]`
Figure 6 – Confirmed Acknowledge State Model

4.7 Dialogs
Dialogs are a type of Condition used by a Server to request user input. They are typically used when a Server has entered some state that requires intervention by a Client. For example a Server monitoring a paper machine indicates that a roll of paper has been wound and is ready for inspection. The Server would activate a Dialog Condition indicating to the user that an inspection is required. Once the inspection has taken place the user responds by informing the Server of an accepted or unaccepted inspection allowing the process to continue.

[image: image7]
Figure 7 – OK Dialog State Model

Three types of Dialog Conditions are included in this specification providing commonly used dialogs. The simplest of these, the OKDialog type, is illustrated in Figure 7. A more complex version, YesNoCancelDialogType is illustrated in Figure 8. Servers may use these three types directly, may extend them, or may extend the abstract dialog type.

[image: image8]
Figure 8 – YesNoCancel Dialog State Model

4.8 Alarms

Alarms are specializations of AcknowledgeableConditions that add the concepts of an active state and a ShelvedOrSuppressed flag to a Condition. The ShelvedOrSuppressed flag is composed from the Shelved state and Suppressed state machines.

[image: image9]
Figure 9 – Alarm State Machine Model

The active sub-state machine includes an inactive and an active state. A Condition in the active state indicates that the situation the Condition is representing currently exists. This can also be termed a Standing Condition When a Condition is in the inactive state it is representing a situation that has returned to a normal state. This can also be termed a Cleared Condition.
Some Alarm Condition subtypes extend the Active state by introducing sub-states of the active state. For example a Condition representing a temperature may provide a high level state as well as a critically high state (see following section).

The Shelve sub-state machine includes a Shelved and an Unshelved state. A Shelved Condition differs from a Disabled Condition in that the Shelved Condition is still fully active and can be included in Subscription Notifications to a Client. The intention of the Shelved state is to allow some Clients to not display Shelved Conditions.
The Suppress sub-state machine includes a Suppressed and an Unsuppressed state. A Suppressed Condition differs from a Disabled Condition in that the Suppressed Condition is still fully active and can be included in Subscription Notifications to a Client. The intention of the Suppressed state is to allow some Clients to not display Suppressed Conditions. This state machine is similar to the Shelve state machine, except that it is suppressed by some automatic means.
Since the Shelve and Suppress state machines are similar and indicate the same action with regard to a Client, the Alarm model also include a flag, the ShelvedOrSuppressed flag, that is a logical or of the two state machines where if either statmachine is active then the flag will be set to true.
Alarm systems typically implement the Suppress and Shelve features to help keep Operators from being overwhelmed during Alarm “storms” by limiting the number of Alarms an Operator sees on a current Alarm display. This is accomplished by setting the SuppressedOrShelved flag on second order dependent Alarms and/or Alarms of less severity, leading the Operator to concentrate on the most critical issues.

The Shelve state machine allows a Condition to be shelved / un-shelved through UA Methods. For example a UA Client “Current Alarm Display” may allow an Operator to choose a displayed Alarm Condition and request the Alarm Condition to be shelved. The Shelve state machine allows such request to be permanent, one-shot or last only for a set duration. The Suppress state machine allows the changing of the suppressed/unsuppressed state via internal means. This is used for example when the Alarm logic of the underling system is programmed to automatically Suppress an Alarm when other Alarms occur or some other non-Alarm state is reached. When both the Shelved and Suppressed state machines are used together for the same Alarm Condition, the Condition is considered SuppressedOrShelved if either the Shelved or the Suppressed state machine is in the shelved or suppressed state.
4.9 Multiple Active States

In some cases it is desirable to further define the Active state of an Alarm by providing a sub-state machine for the Active State. For example a multi-state level Alarm when active may be in one of the following mutually exclusive sub-states: LowLow, Low, High or HighHigh.
 SHAPE * MERGEFORMAT

Figure 10 – Multiple Active States Example

With the multi-state Alarm model, state transitions among the sub-states of Active are allowed without causing a transition out of the Active state. If the state transition in the actve sub state machine would result in an Event Notification, then the Event Notification is sent to any subscribing Clients.

Section 5 defines ObjectTypes to support multi-state Alarms for level, deviation and rate-of-change. For example, the MultiLevelAlarmType is a specialization of the LevelAlarmType intended to represent a level Alarm representing multiple mutually exclusive levels.

4.10 Grouping Conditions

Although the multi-state Alarms described in section 4.9 is a popular style, some Alarm systems allow multiple sub-states, for example High and HighHigh, to be active at the same time. To support this in UA, each subtype is instead created as its own single-state Condition. This allows each would-be sub-state to be handled independently. The one shortcoming of this is that, as independent Conditions, the Client would have no way to know for example, that the High and HighHigh SingleLevelAlarms for a given Source are related. This issue is solved with the introduction of the ConditionGroup Referencetype. A ConditionGroup Reference is used from an Object to group the Conditions to each of the Conditions in the group. For example a Server using SingleLevelAlarmType Event types to model Low, High, HighHigh and LowLow Alarm Conditions would use ConditionGroup References between a level Object and each of the Low, High, HighHigh and LowLow Conditions. An intelligent Client can use this relationship to provide advanced user interface representation of the related Conditions. For example the user interface may only show the most severe Condition and use a popup display to show the other related Conditions.
4.11 Condition Instances

Because Conditions always have a state (enabled or disabled) and possibly many sub-states it makes sense to have instances of Conditions present in the address space. Condition instances will appear in the address space with References to the Objects that “own” them. For example a temperature transmitter that has a built-in high temperature Alarm would appear in the address space as an instance of some temperature transmitter Object with a HasComponent Reference to an instance of a SingleLevelAlarmType.
While exposing Condition instances in the address space is not always possible, doing so allows for direct interaction (read, write and Method invocation) with a specific Condition instance. For example, if a Condition instance is not exposed as a Node in the address space, then there is no way to invoke the Enable or Disable Method for the specific Condition instance.
Section 1 describes the Condition instance model in more detail and provides an example.

4.12 Alarm and Condition Auditing

The Unified Architecture Specifications include provisions for auditing. Auditing is an important security and tracking concept. Audit records provide the “Who”, “When” and “What” information regarding user interactions with a system. These audit records are especially important when Alarm management is considered. Alarms are the typical instrument for providing information to a user that something needs the user’s attention. A record of how the User reacts to this information is required in many cases. Audit Records are generated for all Method calls that affect the state of the system, for example an Acknowledge Method call would generate an Audit event.
The standard audit Event types defined in Part 5 include most fields required for an Audit record. A large number of audit records can occur in a system, which requires that these records be able to be grouped and filtered. To allow for this filtering and grouping, this specification defines a number of new audit Event types. Most of these types do not add or in any manner alter the base Audit record that they are derived from. They do provide a hierarchical structure of the various user interactions that could occur with in the Alarm and Condition system; see clause 7 for an illustration of the hierarchy.
This specification describes the type of audit Event each Method is required to generate, for example the Disable Method has a GeneratesEvent Reference to an AuditConditionEnableEventType. An Event of this type must be generated for every invocation of the Method. It is acceptable to further customize these audit Event types and to have the Methods generate audit events of the new sub-type. The audit Event describes the user interaction with the system, in some cases this interaction may affect more than one Condition or be related to more than one event.
5 Model
5.1 General

The Alarm and Condition model extends the OPC UA base Event model by defining various Event types based on the BaseEventType. All of the Event types defined in this specification can be further extended to form domain or Server specific Alarm and Condition types.

Instances of Alarm and Condition types may be optionally exposed in the address space in order to allow direct access to the state of an Alarm or Condition.

The following sub clauses define the OPC UA standard Alarm and Condition types. Figure 11 informally
describes the hierarchy of these standard types.

The Alarms and Conditions classes are defined in this hierarchy to allow a vendor to derive or instantiate various Objects from any point in this hierarchy.

[image: image11.emf]Defined in [UA Part 5]

BaseEvent

Type

Condition

Type

Acknowledgeable

Condition Type

StateMachine

Type

RefreshStrart

Event Type

SystemEvent

Type

RefreshRequired

Event Type

RefreshEnd

Event Type

AlarmCondition

Type

DialogCondition

Type

AcknowledgeState

Machine Type

ConfirmedState

Machine Type

ConditionState

Machine Type

AlarmActiveState

Machine Type

ShelvedState

Machine Type

SuppressState

Machine Type

AlarmState

Machine Type

AcknowledgeableConditionState

Machine Type

CommentState

Machine Type

StatusState

Machine Type

BaseCondition

Type

OKDialog

Type

AuditUpdateState

EventType

AuditCondition

EventType

AuditUpdateMethod

EventType

AuditEventType

OKDialogState

Machine Type

Figure 11 - Example Condition and Condition State Machine Hierarchy
5.2 Condition Model

5.2.1 General

The Condition model extends the Event model by defining the ConditionType. The ConditionType introduces the concept of state differentiating it from the base Event model. Unlike the BaseEventTypes, Conditions are not transient. The ConditionType is further extended into Dialog and AcknowledgeableConditionTypes, each of which have their own sub-types.

The Condition model is illustrated in Figure 12. The Condition model is formally defined in the subsequent tables. It is worth noting that this figure, like all figures in this document, are not intended to be complete, The figures only illustrates information provided by the formal definitions, For example the following figure does not include ToState / FromState References. In addition, all of the figures in this document use the following conventions, the types of some Variables are listed as part of the Object, i.e. they include a “:” followed by the name of the type. To simplify these figures the StateType Objects are highlighted in a darker shade and transition types are highlighted in yet another colour.

[image: image12.emf]Disable Enable

State

Disabled:

StateType

Enabled:

StateType

ToDisabled:

TransitionType

ToEnabled:

TransitionType

HasCause

HasCause

Condition

Type

ConditionState

MachineType

Status

HasSubStateMachine

StatusState

MachineType

CommentSubState

HasSubStateMachine

CommentState

MachineType

StateMachine

Type

BaseCondition

Type

BaseEvent

Type

Retain

Condition

Refresh

Severity

State

SeverityState

MachineType

HasSubStateMachine

Figure 12 - Condition Model
5.2.2 Condition Model Events

Individual Servers can generate events for Condition state changes and sub-Condition changes in their own manner, but the following interaction between sub-Conditions and the resulting events shall be provided by all Servers. If multiple sub states change, in particular where a single sub-state machine change causes other sub-states to also change, all changes will be collected and a single Event will be generated reflecting the changes. For example, when a Condition goes to into an Alarm state, it would also transition the Acknowledge sub state machine to un-acknowledged and and the comment sub-state machine, but a single Event would be generated with all of the new sub-state values. The LastTransitionTime must be the same for all of the sub-state machines that fire as a result of this same action that cause the orginal sub-state machine transition.
Some changes in the Condition state machine will generate events, but will not effect the the state of other existing sub-state machines, in particular will not effect what would be considered the current state of the Condition. An example of this would be an Event for an Acknowledge of a previous Alarm state. This Acknowledge Event would not affect the current state of the Condition.
In many OPC UA Servers that wrap underlining proprietary systems, Condition instances may only be references to the underlining proprietary system. The OPC UA Server in these cases would expose a type model that reflects the behaviour of the underlining proprietary system, but the event instances along with their state machines would not exist in the OPC UA address space as anything more then a reference. Subscriptions for events would produce the expected result and even reads of the the exposed Condition attributes would function, but the OPC UA server would simply be mapping the request to the appropriate underlining system. In some cases the underlining system may not support reading of the Condition attributes.
5.2.3 BaseConditionTyp
e

The BaseConditionType defines the Retain flag and the Condition RefreshMethod. All other Condition types derive from it. The BaseConditionType is formally defined in Table 3.. The BaseConditionType derives from the BaseEventType and therefore shares the Event model as described in Part 3, Part 4 and Part 5.
Table 3 – BaseConditionType Definition
	Attribute
	Value

	BrowseName
	BaseConditionType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the BaseEventType defined in Part 5

	HasSubtype
	ObjectType
	ConditionType
	Defined in Clause 5.2.6

	HasProperty
	Variable
	Retain
	Boolean
	PropertyType
	New

	HasComponent
	Method
	ConditionRefresh
	
	
	None

SourceNode defined in the BaseEventType for BaseConditionType must be the NodeId of the instance that aggregates the Condition that generates the event.
SourceName defined in the BaseEventType for BaseConditionType should be a descriptive name of the source of the Condition where source include information about the Node that aggregates this Condition.

If an Operator wants to display information about the Condition, then the request should include the NodeId, DisplayName or BrowseName Attribute(s) in the Event selection criteria or in the filter information.
The Retain flag describes an Event as being in a state that is interesting for a Client wishing to synchronize its state of Conditions with the Server’s state. The logic to determine how this flag is set is Server specific, but examples of it are included in section 1 of this document. Typically all Standing events would have the Retain flag set, however, it is possible for Cleared Alarms to have their Retain flag set.
The ConditionRefresh Method allows a Client to request a Refresh of all Conditions that currently have the Retain flag set to be sent from the Server. A Client would typically invoke this Method when it initially connects to a Server and following any situations, such as communication disruptions, in which it would require resynchronization with the Server. The details of this Method are described in section 5.2.4.

When the ConditionRefresh Method is called, the Server must send Event Notifications for all Conditions that have this flag set. A Client that wishes to display the current status of Alarms and Conditions (known as a “current Alarm display”) would use the following logic to process Refresh Event Notifications. The Client flags all “existing” Conditions as suspect on reception of the Event of the RefreshStartEventType. The Client adds any new Events that are received during the Refresh without flagging them as suspect. The Client also removes the suspect flag from any “existing” Conditions that are returned as part of the Refresh. When the Client receives an Event of the RefreshEndEventType, it removes any remaining suspect Events, since they no longer apply.
In some cases a Server may require a Client to issue a Refresh. In this case the Server will generate an Event of the RefreshRequiredEventType. When a Client receives this Event it must issue a Refresh Method. A typical case in which a Server would issue this Event would be in the case of a Server that is just wrapping an underlying system and the Server encounters a problem communicating with the underlying system. The Server could not be sure that what it has reported to the Client is accurate, and it can not automatically initiate a Refresh, since this could provide confusing information to a Client. The Server could Refresh its state from the underlying system during a Refresh without providing misleading or confusing information.
In normal processing when a Client receives an Event with the Retain flag cleared, the Client should consider this as an Event that is no longer of interest, in the case of a “current Alarm display” the Condition would be removed from the display.

It is anticipated that Server authors will derive classes from this BaseConditionType or from one of the classes derived from it. Users may also use the sub classes as they are defined to instantiate instances.

5.2.4 ConditionRefresh Method

The ConditionRefresh Method is used by a Client to request a Refresh of Conditions. The ConditionRefresh Method is formally defined in Table 4. The calling argument provides a Subscription identifier indicating which Client Subscription shall be refreshed. The Server will respond to the call with a response code for the identified Subscription. A Subscription that is accepted successfully by the Server shall react as follows:

1. The Server issues a RefreshStartEventType (defined in section 5.2.5.1) Event marking the start of Refresh.

2. The Server issues Notifications of any existing Conditions that meet the Subscriptions content filter criteria, are enabled, and currently have the Retain flag set.

3. The Server may intersperse new Event Notifications that have not been previously issued to the notifier along with those being sent as part of the Refresh request.

4. The Server issues a RefreshEndEventType (defined in section 5.2.5.2) Event to signal the end of the Refresh.

Table 4 – ConditionRefresh Method Definition

	Attribute
	Value

	BrowseName
	ConditionRefresh

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	HasProperty
	Variable
	InputArguments
	InputArgument[]
	PropertyType
	Mandatory

	
	
	
	
	
	

The arguments of this Method have the Value defined in Table 5.

Table 5 – ConditionRefresh Method Arguments

	Name
	Type
	Description

	InputArguments
	
	

	
ConditionRefreshRequest
	IntegerId
	a valid Subscription ID of the Subscription to be refreshed

	
	
	

	OutputArguments
	
	

	
	
	

The entry in the input argument is a Subscription ID indicating which Subscription is to be refreshed.

If more then one Subscription is to be refreshed, then the standard call Service array processing can be used.

This Method has no return arguments other then the standard return arguments associated with the call Service which includes the StatusCode and diagnostic information.

Table 6 defines the Service results specific to this Service. Common StatusCodes are defined in Part 4.

Table 6 – ConditionRefresh Service Result Codes

	Symbolic Id
	Description

	RefreshInProgress
	This Condition Refresh failed, a Condition Refresh operation is already in progress

	
	

	
	

The ConditionRefresh includes some custom behaviour with regards to Conditions that may exist in the address space, but are not what one would consider Current Conditions. If an Event that is being provided as part of a Refresh is not a Current Event (for example an Event associated with an AckPreviousRequired Condition) then the current state for the StateMachine shall return a null. The current state shall only ever be returned for the current Condition.

5.2.5 Condition Refresh Related Events

5.2.5.1 RefreshStartEventType

This EventType is used by a Server to mark the beginning of a Refresh Notification cycle. Its representation in the AddressSpace is formally defined in Table 7.

Table 7 – RefreshStartEventType Definition

	Attribute
	Value

	BrowseName
	RefreshStartEventType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	NodeId
	TypeDefinition
	ModellingRule

	
	
	
	

	Inherit the Properties of the SystemEventType defined in Part 5, i.e. it has HasProperty References to the same Nodes.

5.2.5.2 RefreshEndEventType

This EventType is used by a Server to mark the end of a Refresh Notification cycle. Its representation in the AddressSpace is formally defined in Table 8.

Table 8 – RefreshEndEventType Definition

	Attribute
	Value

	BrowseName
	RefreshEndEventType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	NodeId
	TypeDefinition
	ModellingRule

	
	
	
	

	Inherit the Properties of the SystemEventType defined in Part 5, i.e. it has HasProperty References to the same Nodes.

5.2.5.3 RefreshRequiredEventType

This EventType is used by a Server to indicate that a significant change has occurred in the Server or in the subsystem below the Server that may or does invalidate the Condition state of a Subscription. Its representation in the AddressSpace is formally defined in Table 9.

Table 9 – RefreshRequiredEventType Definition

	Attribute
	Value

	BrowseName
	RefreshRequiredEventType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	NodeId
	TypeDefinition
	ModellingRule

	
	
	
	

	Inherit the Properties of the SystemEventType defined in Part 5, i.e. it has HasProperty References to the same Nodes.

5.2.6 AuditConditionEventType
The AuditConditionEventType is an abstract Event type that is used for grouping of the Condition related audit events into a hierarchical structure. The AuditConditionEventType is formally defined in Table 10.

Table 10 – AuditConditionEventType Definition

	Attribute
	Value

	BrowseName
	AuditConditionEventType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Inherit the Properties of the AuditUpdateStateEventType defined in Part 5

	
	
	
	
	
	

	
	
	
	
	
	

This EventType inherits all Properties of the AuditUpdateStateEventType. Their semantic is defined in Part 5. The inherited Property SourceNode must be filled with the NodeId of the StateMachine instance were the State changed. If the State changed in a sub-machine, then the NodeId of the sub-machine has to be used. The SourceName for Events of this type shall be “Method/” and the Service that generated the Event (e.g. Confirm Method).
5.2.7 ConditionType

The ConditionType defines all general characteristics of a Condition. All other ConditionTypes derive from it. The Condition type is formally defined in Table 11. The ConditionType derives from the BaseConditionType and therefore shares the Event model as described in Part 3, Part 4 and Part 5.

Table 11 – ConditionType Definition
	Attribute
	Value

	BrowseName
	ConditionType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the BaseConditionType defined in clause 5.2.3

	HasSubtype

	ObjectType
	DialogConditionType
	Defined in Clause 5.3.2

	HasSubtype
	ObjectType
	AcknowledgeableConditionType
	Defined in Clause 5.4.2

	HasComponent
	Object
	State
	
	ConditionStateMachineType
	Mandatory

	
	
	
	
	
	

The State Object provides the state machine of the Condition. The state machine is defined by the ConditionStateMachineType that is described in clause 5.2.8. Derived types can extend the state machine by adding sub-states to one or more of the states.
5.2.8 ConditionStateMachineType

The ConditionStateMachineType defines the primary state machine representing the enabled state of a Condition. The type is defined in Table 12. The states and transitions of this state machine are described in Table 13. It is expected that the Enabled state of the state machine will be extended by definition of sub-state machines. By definition the Disabled state can not be extended.
Table 12 – ConditionStateMachineType Definition
	Attribute
	Value

	BrowseName
	ConditionStateMachineType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	Data Type
	TypeDefinition
	Modelling Rule

	Subtype of the FiniteStateMachineType defined in Part 5

	HasSubtype
	ObjectType
	OkDialogStateMachineType
	Defined in Clause 5.3.5

	HasSubtype
	ObjectType
	OkCancelDialogStateMachineType
	Defined in Clause 5.3.10

	HasSubtype
	ObjectType
	YesNoCancelDialogStateMachineType
	Defined in Clause 5.3.15

	HasSubtype
	ObjectType
	AcknowledgeableConditionStateMachineType
	Defined in Clause 5.4.6

	
	
	
	

	HasComponent
	Method
	Disable
	
	
	Mandatory

	HasComponent
	Method
	Enable
	
	
	Mandatory

	HasComponent
	Object
	Disabled
	
	StateType
	Mandatory

	HasComponent
	Object
	Enabled
	
	StateType
	Mandatory

	HasComponent
	Object
	ToDisabled
	
	TransitionType
	Mandatory

	HasComponent
	Object
	ToEnabled
	
	TransitionType
	Mandatory

	HasComponent
	Object
	Status
	
	StatusStateMachineType
	Mandatory

	HasComponent
	Object
	SeverityState
	
	SeverityStateMachineType
	Mandatory

	HasComponent
	Object
	CommentSubState
	
	CommentStateMachineType
	Mandatory

	HasComponent
	Object
	CommentPreviousSubState
	
	CommentStateMachineType
	Optional

	HasComponent
	Method
	AddCommentByEventIds
	
	
	Mandatory

The AddCommentByEventIds Method is used to apply comments to one or more Conditions. This Method is defined in section 5.2.15.
A Condition’s enabled state effects the generation of Event Notifications and as such results in the following specific behaviour:

· An Event Notification will be generated by the Server when the Condition enters the disabled state. The Retain Property of this Event Notification will be set to false by the Server to indicate to the Client that the Condition is currently not of interest to Clients. No subsequent Events will be generated while the Condition remains in the disabled state.
· The Server may choose to continue to test for a Condition while it is disabled. However, no Event Notifications will be generated while the Condition is disabled.
· The following properties will continue to have valid values for any condition in the disabled state that exists in the address space; EventId, Event Type, Source Node, Source Name, Time, Description, and Enabled. Other properties may no longer provide current valid values. All properties that are no longer provided must return a status of Bad_ConditionDisabled.
Table 13 – Condition States and Transitions Definition

	BrowseName
	References
	Target BrowseName
	Value
	Target TypeDefinition
	Notes

	States

	Disabled
	HasProperty
	StateNumber
	0
	PropertyType
	

	Enabled
	HasProperty
	StateNumber
	1
	PropertyType
	

	ToDisabled
	HasProperty
	TransitionNumber
	0
	PropertyType
	

	ToEnabled
	HasProperty
	TransitionNumber
	1
	PropertyType
	

	Enabled
	HasSubstateMachine
	Status
	
	StatusStateMachineType
	

	Enabled
	HasSubstateMachine
	SeverityState
	
	SeverityStateMachineType
	

	Enabled
	HasSubstateMachine
	CommentSubState
	
	CommentStateMachineType
	

	

	Transitions

	ToDisabled
	FromState
	Enabled
	
	StateType
	

	
	ToState
	Disabled
	
	StateType
	

	
	HasCause
	Disable
	
	Method
	

	
	HasEffect
	ConditionType
	
	
	

	ToEnabled
	FromState
	Disabled
	
	StateType
	

	
	ToState
	Enabled
	
	StateType
	

	
	HasCause
	Enable
	
	Method
	

	
	HasEffect
	ConditionType
	
	
	

	
	
	
	
	
	

The status codes described in Table 14 can be returned as the status of various Event properties.
Table 14 – Event Status Codes

	Symbolic Id
	Description

	Bad_ConditionAlreadyDisabled
	This Condition has already been disabled

	Bad_ConditionDisabled
	Property not available, this Condition is disabled

	
	

	
	

5.2.9 ConditionGroupType

The ConditionGroupType is used by a Server to indicated that a group of Conditions are related and should be treated as related by the Client. It is formally defined in Table 15.

Table 15 – ConditionGroupType Definition
	Attribute
	Value

	BrowseName
	ConditionGrouping

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the FolderType

	HasSubtype

	ObjectType
	xxxxxxx
	Defined in Clause xxxxx

	
	
	
	
	
	

This type is a sub-type of FolderType and does not define any additional properties; it is used only for grouping of Conditions. A simple example would be if a user wished to define two independent level Alarms, Hi and Low, but both Alarms deal with the level in a tank. The user would define a Property Level of ConditionGroupType and include both Alarm Conditions in the ConditionGrouping folder. More detailed examples using this type are provided in XXXXX and the Specific instances of the type are also formally used in sections XXXXX, XXXX, XXXX.

5.2.10 Disable Method

The Disable Method is used to set the State of a Condition to the disabled state. The Disable Method is invoked using the UA Call Service as described in Part 4. The details of the Disable Method are described in Table 16.

Table 16 – Disable Method Definition

	Attribute
	Value

	BrowseName
	Disable

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	GeneratesEvent
	
	
	
	AuditConditionEnableEventType
	Mandatory

This Method has no return arguments other then the standard return arguments associated with the call Service which includes the StatusCode and diagnostic information.

This Method must generate an error code for calls that do not succeed in a transition to the disabled state; this includes the case where the state machine is already in the disabled state.
5.2.11 Enable Method

The Enable Method is used to set the State of a ConditionType instance to the enabled state. The Enable Method is invoked using the UA Call Service as described in Part 4. The details of the Enable Method are described in Table 17.

Table 17 – Enable Method Definition

	Attribute
	Value

	BrowseName
	Enable

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	GeneratesEvent
	
	
	
	AuditConditionEnableEventType
	Mandatory

This Method has no return arguments other then the standard return arguments associated with the call Service which includes the StatusCode and diagnostic information.
This Method must generate an error code for calls that do not succeed in a transition to the enabled state; this includes the case where the state machine is already in the enabled state.
5.2.12 AuditConditionEnableEventType
This EventType is used to indicate a change in the enabled state of a Condition. It is formally defined in Table 18.

Table 18 – AuditConditionEnableEventType Definition

	Attribute
	Value

	BrowseName
	AuditConditionEnableEventType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Inherit the Properties of the AuditConditionEventType defined in section 5.2.6

	
	
	
	
	
	

This EventType inherits all Properties of the AuditConditionEventType defined in section 5.3.7 The inherited Property SourceNode must be filled with the NodeId of the StateMachine instance were the State changed. If the State changed in a sub-machine, then the NodeId of the sub-machine has to be used. The SourceName for Events of this type shall be “Method/” and the Service that generated the Event (e.g. Disable Method).
The OldState Property reflects the CurrentStateNumber (defined in Part 5) prior the change.

The NewState Property reflects the new CurrentStateNumber after the change.
5.2.13 StatusStateMachineType

The StatusStateMachineType defines the overall quality of a Condition. The StatusStateMachineType is illustrated in Figure 13.

[image: image13.emf]State

Enabled:

StateType

Condition

Type

ConditionState

MachineType

Status

HasSubStateMachine

StatusState

MachineType

Change:

StateType

StatusChange:

TransitionType

StatusCode

StateMachine

Type

BaseCondition

Type

Figure 13 - Status State machine

The type is defined in Table 19. The states and transitions of this state machine are described in Table 20.

Table 19 – StatusStateMachineType Definition
	Attribute
	Value

	BrowseName
	StatusStateMachineType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the StateMachineType defined in Part 5

	HasProperty
	Variable
	statusCode
	
	StatusCode
	Mandatory

	HasComponent
	Object
	Change
	
	StateType
	Mandatory

	HasComponent
	Object
	StatusChange
	
	TransitionType
	Mandatory

The statusCode Variable provides the overall quality of the Condition
.
The Change StateType and StatusChange TransitionType Objects are used to initiate a Notification when the overall Condition status changes.
Table 20 – Status States and Transitions Definition

	BrowseName
	References
	Target BrowseName
	Value
	Target TypeDefinition
	Notes

	States

	Change
	HasProperty
	StateNumber
	0
	PropertyType
	

	StatusChange
	HasProperty
	TransitionNumber
	0
	PropertyType
	

	

	Transitions

	StatusChange
	FromState
	Change
	
	StateType
	

	
	ToState
	Change
	
	StateType
	

	
	HasEffect
	ConditionEventType
	
	
	

	
	
	
	
	
	

5.2.14 SeverityStateMachineType

The SeverityStateMachineType is used to generate events in the case of severity changes in a Condition. The SeverityStateMachineType is illustrated in Figure 14.

[image: image14.emf]State

Enabled:

StateType

Condition

Type

ConditionState

MachineType

SeverityState

HasSubStateMachine

Severity

StateMachineType

Change:

StateType

SeverityChange:

TransitionType

LastSeverity

StateMachine

Type

BaseCondition

Type

Figure 14 - Severity State machine

The type is defined in Table 19. The states and transitions of this state machine are described in Table 20.

Table 21 – SeverityStateMachineType Definition
	Attribute
	Value

	BrowseName
	SeverityStateMachineType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the StateMachineType defined in Part 5

	
	
	
	
	
	

	HasProperty
	Variable
	LastSeverity
	
	Unit16
	Mandatory

	HasComponent
	Object
	Change
	
	StateType
	Mandatory

	HasComponent
	Object
	ServerityChange
	
	TransitionType
	Mandatory

The LastSeverity Variable provides the previous severity of the Condition. Initially this Variable contains a null, it will return a value only after a severity change.
The Change StateType and SeverityChange TransitionType Objects are used to initiate a Notification when the overall Condition changes.

Table 22 – Severity States and Transitions Definition

	BrowseName
	References
	Target BrowseName
	Value
	Target TypeDefinition
	Notes

	States

	Change
	HasProperty
	StateNumber
	0
	PropertyType
	

	SeverityChange
	HasProperty
	TransitionNumber
	0
	PropertyType
	

	

	Transitions

	SeverityChange
	FromState
	Change
	
	StateType
	

	
	ToState
	Change
	
	StateType
	

	
	HasEffect
	ConditionEventType
	
	
	

	
	
	
	
	
	

5.2.15 AddCommentByEventIds Method

The AddCommentByEventIds Method is used to apply comments to one or more Conditions. The AddCommentByEventIds Method is invoked using the UA Call Service as described in Part 4. The details of the AddCommentByEventIds Method are described in Table 23.
Table 23 – AddCommentByEventIds Method Definition

	Attribute
	Value

	BrowseName
	AddCommentByEventIds

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	HasProperty
	Variable
	InputArguments
	Argument[]
	PropertyType
	Mandatory

	HasProperty
	Variable
	OutputArguments
	Argument[]
	PropertyType
	Mandatory

	GeneratesEvent
	
	
	
	AuditConditionCommentEventType

	Mandatory

Calling this Method will generate an audit Event of type AuditConditionCommentEventType or a sub type of it for every EventId that was passed. The arguments of this Method have the Value defined in Table 24.

Table 24 – AddCommentByEventIds Method Arguments

	Name
	Type
	Description

	InputArguments
	
	

	
EventIds
	ByteString[]
	The array of EventIds

	
Comment
	LocalizedText
	Comment to apply to Conditions specified by the EventIds

	OutputArguments
	
	

	
CommentResponse
	StatusResponseDataType[]
	An array of status responses

When calling the AddCommentByEventIds Method the EventId of all Conditions that have Comment state machines to be transitioned to the CommentAdded state are included in the EventIds argument. The EventId is used by the Server to identify which specific Event occurrence (state transition) is being commented.
The invocation of this Method will result in state transition of the individual Comment state machines associated with the Condition represented by the passed EventId. The Comment State machine will be transitioned in the same manner as if the AddComment Method was called on the particular Condition instance.
For each EventId supplied the Method returns a CommentResponse containing the StatusCode and diagnostic information.

Table 25 defines the Service results specific to this Service. Common StatusCodes are defined in Part 4.

Table 25 – AddCommentByEventIds Result Codes

	Symbolic Id
	Description

	InvalidEventId
	This EventId is not valid for a comment

	
	

	
	

5.2.16 CommentStateMachineType

The CommentStateMachineType extends the StateMachineType defined in Part 5. The state model provides support for commenting Conditions. Figure 15 provides an illustration of the CommentStateMachine model. It is not intended to be a complete definition.

[image: image15.emf]LastComment:

StateType

ToCommentAdded

CommentStateMachine

Type

CommentBy

EventIds

ClientUserID

Comment

StateMachineType

Enabled:

StateType

Comment

SubState

HasSubStateMachine

HasCause

ConditionStateMachine

Type

CommentAdded:

StateType

ToLastComment

AddComment

HasCause

Figure 15 – CommentStateMachineType Model

The model is formally defined in Table 26 and Table 27.
Table 26 – CommentStateMachineType Definition
	Attribute
	Value

	BrowseName
	CommentStateMachineType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the StateMachineType defined in Part 5

	
	
	
	
	
	

	HasProperty
	Variable
	Comment
	LocalizedText
	PropertyType
	Mandatory

	HasProperty
	Variable
	ClientUserId
	String
	PropertyType
	Mandatory

	HasComponent
	Object
	LastComment
	
	InitialStateType
	Mandatory

	HasComponent
	Object
	CommentAdded
	
	StateType
	Mandatory

	HasComponent
	Object
	ToCommentAdded
	
	TransitionType
	Mandatory

	HasComponent
	Object
	ToLastComment
	
	TransitionType
	Mandatory

	HasComponent
	Method
	AddComment
	
	
	Mandatory

The Comment Variable contains the last comment provided. The comment may have been provided by an Acknowledge Method or via an AddComment Method or some other Method. The Comment applies to the current state of the Condition. If any of the sub-state machines associated with the Condition that includes the Comment change and the change affects the current state (i.e. not a previous state StateMachine) then this comment Variable must be set to null.
The initial value of this Variable on the creation of the state machine is null.
The ClientUserId contains the identity of the user who inserted the most recent Comment. ClientUserID is defined in Part 5.

Table 27 – CommentStateMachine States and Transitions

	BrowseName
	References
	Target BrowseName
	Value
	Target TypeDefinition
	Notes

	States

	LastComment
	HasProperty
	StateNumber
	0
	PropertyType
	

	CommentAdd
	HasProperty
	StateNumber
	1
	PropertyType
	

	ToCommentAdd
	HasProperty
	TransitionNumber
	0
	PropertyType
	

	ToLastComment
	HasProperty
	TransitionNumber
	1
	PropertyType
	

	
	
	
	
	
	

	

	Transitions

	ToCommentAdded
	FromState
	LastComment
	
	StateType
	

	
	ToState
	CommentAdded
	
	StateType
	

	
	HasCause
	AddComment
	
	Method
	See 5.2.17

	
	HasCause
	AddCommentByEventIds
	
	Method
	See 5.2.15

	ToLastComment
	FromState
	CommentAdded
	
	StateType
	

	
	ToState
	LastComment
	
	StateType
	

	
	HasEffect
	AcknowledgeableConditionType
	
	
	

The CommentAdded state is a transient state. When a comment is being added, the state transitions to CommentAdded, This state will automatically transition to LastComment as soon as the Comment is recorded by the Server. An Event is generated on the transition out of this state to the LastComment state.

5.2.17 AddComment Method

The AddComment Method is used to apply a comment to an existing instance of a CommentStateMachine transitioning the CommentStatemachine to the CommentAdded state. The AddComment Method is invoked using the UA Call Service as described in Part 4. The details of the AddComment Method are described in Table 28.
Table 28 – AddComment Method Definition

	Attribute
	Value

	BrowseName
	AddComment

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	HasProperty
	Variable
	InputArguments
	Argument
	PropertyType
	Mandatory

	GeneratesEvent
	
	
	
	AuditConditionCommentEventType
	Mandatory

The arguments of this Method have the Value defined in Table 29.

Table 29 – AddComment Method Arguments

	Name
	Type
	Description

	InputArguments
	
	

	
Comment
	LocalizedText
	Comment to apply to Condition specified by the EventId

	OutputArguments
	
	

The comment to be applied is put into the Comment argument. This Method has no return arguments other then the standard return arguments associated with the call Service which includes the StatusCode and diagnostic information.

5.2.18 AuditConditionCommentEventType

The AuditConditionCommentEventType is a concrete Event type that is used for grouping of the Condition related audit events into a hierarchical structure. The AuditConditionCommentEventType is formally defined in Table 10.

Table 30 – AuditConditionCommentEventType Definition

	Attribute
	Value

	BrowseName
	AuditConditionEventType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Inherit the Properties of the AuditConditionEventType defined in section 5.2.6

	
	
	
	
	
	

	
	
	
	
	
	

This EventType inherits all Properties of the AuditConditionEventType. Their semantic is defined in section 5.2.6. The inherited Property SourceNode must be filled with the NodeId of the StateMachine instance were the State changed. If the State changed in a sub-machine, then the NodeId of the sub-machine has to be used. The SourceName for Events of this type shall be “Method/” and the Service that generated the Event (e.g. Comment Method).
The OldState Property reflects the CurrentStateNumber prior the change.

The NewState Property reflects the new CurrentStateNumber after the change.
5.3 Dialog Model

5.3.1 General

The Dialog Model is an extension of the Condition model. It defines a few standard dialogs. It can also be extended for vendor specific dialogs. An overview of the Dialog model is illustrated in Figure 16 and described in the following section.

[image: image16.emf]BaseCondition

Type

Condition

Type

DialogCondition

Type

OKCancelDialog

Type

YesNoCancelDialog

Type

OKDialog

Type

OKDialogSubState

StateMachineType

OKCancelDialogStateMachine

Type

ConditionStateMachine

Type

OKDialog

StateMachineType

BaseEvent

Type

StateMachineType

YesNoCancelDialog

StateMachineType

OKCancelDialogSubState

StateMachineType

OKCancelDialogSubState

StateMachineType

State

Figure 16 - Dialog Model
It is worth noting that this model creates subtypes of the DialogCondition type that redefine the State component. This redefinition is only legal if the new defined type is a sub type of the original definition type. In this case; the State component is redefined as being of a type that is a subtype of the original state machine, but includes an additional sub-state machine. This will be illustrated further for each type.
5.3.2 DialogConditionType

The DialogConditionType is an abstract type used to classify various Condition types into a category representing Conditions as dialogs. It is formally defined in Table 31.
Table 31 – DialogConditionType Definition

	Attribute
	Value

	BrowseName
	DialogConditionType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	Modelling
Rule

	Subtype of the ConditionType defined in clause 5.2.2

	HasSubtype
	ObjectType
	OkDialogType
	Defined in Clause 5.3.3

	HasSubtype
	ObjectType
	OkCancelDialogType
	Defined in Clause 5.3.9

	HasSubtype
	ObjectType
	YesNoCancelDialogType
	Defined in Clause 5.3.14

	
	
	
	

5.3.3 OKDialog Overview

The OKDialog provides a single active state which can be used be a Server to indicate the need for a Client response. Figure 17 provides an overview of the OKDialog type and state models.

[image: image17.emf]DialogCondition

Type

OKDialog

Type

OK

State

Inactive:

StateType

Active:

StateType

ToActive:

TransitionType

ToAccepting:

TransitionType

HasCause

OKDialogSubState

StateMachineType

ConditionStateMachine

Type

OKDialog

StateMachineType

Enabled:

StateType

State

StateMachineType

HasSubStateMachine

Dialog

Accepting:

StateType

ToInactive:

TransitionTYpe

Enabled:

StateType

Figure 17 - OkDialogType Model and State Machine

The OKDialog Model redefines the “State” Object to be of OKDialogStateMachine type. This type is a sub-type of the ConditionStateMachineType. It adds a sub-state machine (Dialog) to the enabled state of the Condition state model. This sub-state machine (of type OkDialogSubStateStateMachine) defines three new states - Active, Accepting and Inactive.

5.3.4 OkDialogType

The OkDialogType extends the DialogConditionType by defining a single ok state Condition. It is formally defined in Table 32.

Table 32 – OkDialogType Definition
	Attribute
	Value

	BrowseName
	OkDialogType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the DialogConditionType defined in 5.3.2

	HasComponent
	Object
	State
	
	OkDialogStateMachineType
	Mandatory

The State Object provides the state machine of the ok dialog. The state machine is defined by the OkDialogStateMachineType that is described in clause 5.3.5. Derived types can extend the state machine by adding sub-states to one or more of the states.

5.3.5 OkDialogStateMachineType

The OkDialogStateMachineType defines the state machine representing the enabled state of an ok dialog Condition. The type is defined in Table 33. The states and transitions of this state machine are described in Table 36.
Table 33 – OkDialogStateMachineType Definition
	Attribute
	Value

	BrowseName
	OkDialogStateMachineType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the ConditionStateMachineType defined in 5.2.8

	HasComponent
	Object
	Dialog
	
	OKDialogSubStateStateMachineType
	Mandatory

The OKDialogStateMachineType extends the ConditionStateMachineType with the addition of the Dialog component. This component is of type OKDialogSubStateStateMachineType, which is defined in section 5.3.6. The Dialog is a sub-state machine for the Enabled state of the ConditionStateMachine as described in Table 34.
Table 34 – OkDialogStateMachineType States and Transitions

	BrowseName
	References
	Target BrowseName
	Value
	Target TypeDefinition
	Notes

	States

	Enabled
	HasSubStateMachine
	Dialog
	
	OKDialogSubStateStateMachineType
	

	

5.3.6 OkDialogSubStateStateMachineType

The OkDialogSubStateStateMachine defines the state machine representing the Enabled state of an OKDialogCondition. The type is defined in Table 35.
Table 35 – OkDialogSubStateStateMachineType Definition
	Attribute
	Value

	BrowseName
	OkDialogSubStateStateMachineType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the FiniteStateMachineType defined in Part 5

	
	
	
	
	
	

	HasComponent
	Method
	Ok
	
	
	Mandatory

	HasComponent
	Object
	Inactive
	
	InitialStateType
	Mandatory

	HasComponent
	Object
	Active
	
	StateType
	Mandatory

	HasComponent
	Object
	Accepting
	
	StateType
	Mandatory

	HasComponent
	Object
	ToAccepting
	
	TransitionType
	Mandatory

	HasComponent
	Object
	ToInactive
	
	TransitionType
	Mandatory

	HasComponent
	Object
	ToActive
	
	TransitionType
	Mandatory

 A Server can use the ToActive transition to set the Condition into the Active state. A Client can issue the Ok Method to return the Condition to the Inactive state, via the Accepting state. All states and transitions of this state machine are described in Table 36.
The Retain Property is set to true when in the Active state.

Table 36 – OkDialogSubStateStateMachineType States and Transitions

	BrowseName
	References
	Target BrowseName
	Value
	Target TypeDefinition
	Notes

	States

	Inactive
	HasProperty
	StateNumber
	0
	PropertyType
	

	Active
	HasProperty
	StateNumber
	1
	PrpoertyType
	

	ToAccepting
	HasProperty
	TransitionNumber
	0
	PrpoertyType
	

	ToActive
	HasProperty
	TransitionNumber
	1
	PrpoertyType
	

	ToInactive
	HasProperty
	TransitionNumber
	2
	PrpoertyType
	

	

	Transitions

	ToAccepting
	FromState
	Active
	
	StateType
	

	
	ToState
	Accepting
	
	StateType
	

	
	HasCause
	Ok
	
	Method
	

	ToActive
	FromState
	Inactive
	
	StateType
	

	
	ToState
	Active
	
	StateType
	

	
	HasEffect
	OkDialogType
	
	
	

	ToInactive
	FromState
	Accepting
	
	StateType
	

	
	ToState
	Inactive
	
	StateType
	

	
	HasEffect
	OkDialogType
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

5.3.7 Ok Method

The Ok Method is used to accept an OkDialogType instance and set it to the inactive state. The OK Method is also Referenced by the OkCancelDialogType and YesNoCancelDialogType and would be used for instances of these types as well. The Ok Method is invoked using the UA Call Service as described in Part 4. The details of the Ok Method are described in Table 37.

Table 37 – Ok Method Definition

	Attribute
	Value

	BrowseName
	Ok

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	GeneratesEvent
	
	
	
	AuditConditionDialogEventType
	Mandatory

This Method has no arguments other than the standard arguments associated with the call Service which includes the StatusCode and diagnostic information.
This Method must generate an error code for calls that do not succeed in a transition to the Accepting state; this includes the case where the state machine is already in the Accepting or Inactive state.
5.3.8 OKCancelDialog Overview

The OkCancelDialog provides a single active state which can be used by a Server to indicate the need for a Client response. Figure 18 provides an overview of the OKCancelDialog type and state models.

[image: image18.emf]DialogCondition

Type

OKCancelDialog

Type

OK

State

Inactive:

StateType

Active:

StateType

ToActive:

TransitionType

ToAccepting:

TransitionType

HasCause

OKCancelDialogSubState

StateMachineType

ConditionStateMachine

Type

OKCancelDialog

StateMachineType

Enabled:

StateType

State

StateMachineType

HasSubStateMachine

Dialog

Cancel

Cancelling:

StateType

HasCause

Accepting:

StateType

ToCancelling:

TransitionType

ToInactive:

TransitionType

Enabled:

StateType

Figure 18 - OkCancelDialog Type Model and State Machine
The OKCancelDialog Model redefines the “State” Object to be of OKCancelDialogStateMachine type. This type is a sub-type of the ConditionStateMachineType. It adds a sub-state machine (Dialog) to the enabled state of the Condition state model. This sub-state machine (of type OkCancelDialogSubStateStateMachine) defines four new states - Active, Cancelling, Accepting and Inactive.
5.3.9 OkCancelDialogType

The OkCancelDialogType is the same as the OkDialogType with the exception that it also defines an additional Cancelling state. A Cancel Method is added to provide the negative response. The type is formally defined in Table 38.

Table 38 – OkCancelDialogType Definition
	Attribute
	Value

	BrowseName
	OkCancelDialogType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the OkDialogType defined in 5.3.3

	HasComponent
	Object
	State
	
	OkCancelDialogStateMachineType
	Mandatory

The State Object provides the state machine of the ok dialog. The state machine is defined by the OkCancelDialogStateMachineType that is described in clause 5.3.10. Derived types can extend the state machine by adding sub-states to one or more of the states.

5.3.10 OkCancelDialogStateMachineType

The OkCancelDialogStateMachineType extends the OkDialogStateMachineType by adding a cancel Method. The type is defined in Table 41. The states and transitions of this state machine are described in Table 42.
Table 39 – OkCancelDialogStateMachineType Definition
	Attribute
	Value

	BrowseName
	OkCancelDialogStateMachineType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the ConditionStateMachineType defined in 5.3.5

	HasComponent
	Object
	Dialog
	
	OKCancelDialogSubStateStateMachineType
	Mandatory

The OKCancelDialogStateMachineType extends the ConditionStateMachineType with the addition of the EnabledSubState component. This component is of type OKCancelDialogSubStateStateMachineType, which is defined in section 5.3.11. The EnabledSubState is a sub-state machine for the Enabled state of the ConditionStateMachine as illustrated in Table 40.
Table 40 – OkCancelDialogStateMachineType States and Transitions

	BrowseName
	References
	Target BrowseName
	Value
	Target TypeDefinition
	Notes

	States

	Enabled
	HasSubStateMachine
	Dialog
	
	OKCancelDialogSubStateStateMachineType
	

	
	
	
	
	
	

5.3.11 OkCancelDialogSubStateStateMachineType

The OKCancelDialogSubStateStateMachine defines the state machine representing the Enabled state of an ok cancel dialog Condition. The type is defined in Table 39.
Table 41 – OkCancelDialogSubStateStateMachineType Definition
	Attribute
	Value

	BrowseName
	OkCancelDialogSubStateStateMachineType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the FiniteStateMachineType defined in 5.3.5

	
	
	
	
	
	

	HasComponent
	Method
	Ok
	
	
	Mandatory

	HasComponent
	Object
	Inactive
	
	IntialStateType
	Mandatory

	HasComponent
	Object
	Active
	
	StateType
	Mandatory

	HasComponent
	Object
	Accepting
	
	StateType
	Mandatory

	HasComponent
	Object
	Cancelling
	
	StateType
	Mandatory

	HasComponent
	Object
	CancellingToInactive
	
	TransitionType
	Mandatory

	HasComponent
	Object
	AcceptingToInactive
	
	TransitionType
	Mandatory

	HasComponent
	Object
	ToActive
	
	TransitionType
	Mandatory

	HasComponent
	Object
	ToAccepting
	
	TransitionType
	Mandatory

	HasComponent
	Object
	ToCancelling
	
	TransitionType
	Mandatory

	HasComponent
	Method
	Cancel
	
	
	Mandatory

The OkCancelDialog provides a single active state which can be used by a Server to indicate the need for a Client response. A Server can use the ToActive transition to set the Condition into the Active state. A Client can issue the Ok Method described in section 5.3.7 to respond with an acceptance and return the Condition to the Inactive state via the Accepting state. A Client can also issue the Cancel Method to respond with a non acceptance and return the Condition to the Inactive state via the Cancelling state.

Table 42 – OkCancelDialogStateMachineType States and Transitions

	BrowseName
	References
	Target BrowseName
	Value
	Target TypeDefinition
	Notes

	States

	Inactive
	HasProperty
	StateNumber
	0
	PropertyType
	

	Active
	HasProperty
	StateNumber
	1
	PropertyType
	

	Accepting
	HasProperty
	StateNumber
	2
	PropertyType
	

	Cancelling
	HasProperty
	StateNumber
	3
	PropertyType
	

	ToAccepting
	HasProperty
	TransitionNumber
	0
	PropertyType
	

	ToActive
	HasProperty
	TransitionNumber
	1
	PropertyType
	

	ToCancelling
	HasProperty
	TransitionNumber
	2
	PropertyType
	

	CancellingToInactive
	HasProperty
	TransitionNumber
	3
	PropertyType
	

	AcceptingtoInactive
	HasProperty
	TransitionNumber
	4
	PropertyType
	

	

	Transitions

	ToAccepting
	FromState
	Active
	
	StateType
	

	
	ToState
	Accepting
	
	StateType
	

	
	HasCause
	Ok
	
	Method
	see 5.3.7

	ToActive
	FromState
	Inactive
	
	StateType
	

	
	ToState
	Active
	
	StateType
	

	
	HasEffect
	OkCancelDialogType
	
	
	

	ToCancelling
	FromState
	Active
	
	StateType
	

	
	ToState
	Cancelling
	
	StateType
	

	
	HasCause
	Cancel
	
	Method
	

	CancellingToInactive
	FromState
	Cancelling
	
	StateType
	

	
	ToState
	Inactive
	
	StateType
	

	
	HasEffect
	OkCancelDialogType
	
	
	

	AcceptingtoInactive
	FromState
	Accepting
	
	StateType
	

	
	ToState
	Inactive
	
	StateType
	

	
	HasEffect
	OkCancelDialogType
	
	
	

	
	
	
	
	
	

5.3.12 Cancel Method

The Cancel Method is used to cancel an OkCancelDialogType instance and set it to the inactive state. . It is also Referenced by the YesNoCancelDialogType and would be used for instances of this type as well. The Cancel Method is invoked using the UA Call Service as described in Part 4. The details of the Cancel Method are described in Table 43.

Table 43 – Cancel Method Definition

	Attribute
	Value

	BrowseName
	Cancel

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	GeneratesEvent
	
	
	
	AuditConditionDialogEventType
	Mandatory

This Method has no arguments other than the standard arguments associated with the call Service which includes the StatusCode and diagnostic information.
This Method must generate an error code for calls that do not succeed in a transition to the Cancelling state; this includes the case where the state machine is already in the Cancelling or Inactive state.
5.3.13 YesNoCancelDialog Overview

The YesNoCancelDialog provides a single active state which can be used by a Server to indicate the need for a Client response. Figure 19 provides an overview of the YesNoCancelDialog type and state models.

[image: image19.emf]DialogCondition

Type

YesNoCancelDialog

Type

OK

State

Inactive:

StateType

Active:

StateType

ToActive:

TransitionType

ToAccepting:

TransitionType

HasCause

YesNoCancelDialogSubState

StateMachineType

ConditionStateMachine

Type

YesNoCancelDialog

StateMachineType

Enabled:

StateType

State

StateMachineType

HasSubStateMachine

Dialog

Cancel

ToCancelling:

TransitionType

HasCause

No

ToRejecting:

TransitionType

HasCause

Accepting:

StateType

Cancelling:

StateType

Rejecting:

StateType

ToInactive:

TransitionType

Enabled:

StateType

Figure 19 - YesNoCancelDialog Type Model and State Machine
The YesNoCancelDialog Model redefines the “State” Object to be of YesNoCancelDialogStateMachine type. This type is a sub-type of the ConditionStateMachineType. It adds a sub-state machine (Dialog) to the enabled state of the Condition state model. This sub-state machine (of type YesNoCancelDialogSubStateStateMachine) defines five new states - Active, Cancelling, Accepting, Rejecting and Inactive.
5.3.14 YesNoCancelDialogType

The YesNoCancelDialogType is the same as the OkCancelDialogType with the exception that it also defines an additional Rejecting state. A No Method is added to provide the third response. The type is formally defined in Table 38.

Table 44 – YesNoCancelDialogType Definition
	Attribute
	Value

	BrowseName
	YesNoCancelDialogType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the OkDialogType defined in 5.3.3

	HasComponent
	Object
	State
	
	YesNoCancelDialogStateMachineType
	Mandatory

The State Object provides the state machine of the yes no cancel dialog. The state machine is defined by the YesNoCancelDialogStateMachineType that is described in clause 5.3.10. Derived types can extend the state machine by adding sub-states to one or more of the states.

5.3.15 YesNoCancelDialogStateMachineType
The OkCancelDialogStateMachineType extends the OkDialogStateMachineType by adding a cancel Method. The type is defined in Table 41. The states and transitions of this state machine are described in Table 42.
Table 45 – YesNoCancelDialogStateMachineType Definition
	Attribute
	Value

	BrowseName
	OkCancelDialogStateMachineType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the ConditionStateMachineType defined in 5.3.5

	HasComponent
	Object
	Dialog
	
	YesNoCancelDialogSubStateStateMachineType
	Mandatory

The YesNoCancelDialogStateMachineType extends the ConditionStateMachineType with the addition of the dialog component. This component is of type YesNoCancelDialogSubStateMachineType, which is defined in section 5.3.11. The extension is to the Enabled state of the ConditionStateMachine as illustrated in Table 40.
Table 46 – YesNoCancelDialogStateMachineType States and Transitions

	BrowseName
	References
	Target BrowseName
	Value
	Target TypeDefinition
	Notes

	States

	Enabled
	HasSubStateMachine
	Dialog
	
	YesNoCancelDialogSubStateStateMachineType
	

	

5.3.16 YesNoCancelDialogSubStateStateMachineType

The YesNoCancelDialogStateMachineType extends the OkCancelDialogStateMachineType by added a No Method. The type is defined in Table 41. The states and transitions of this state machine are described in Table 42.
Table 47 – YesNoCancelDialogSubStateStateMachineType Definition
	Attribute
	Value

	BrowseName
	YesNoCancelDialogStateMachineType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the FiniteStateMachineType defined in 5.3.5

	
	
	
	
	
	

	HasComponent
	Object
	Inactive
	
	InitialStateType
	Mandatory

	HasComponent
	Object
	Active
	
	StateType
	Mandatory

	HasComponent
	Object
	Accepting
	
	StateType
	Mandatory

	HasComponent
	Object
	Cancelling
	
	StateType
	Mandatory

	HasComponent
	Object
	Rejecting
	
	StateType
	Mandatory

	HasComponent
	Object
	CancellingToInactive
	
	TransitionType

	Mandatory

	HasComponent
	Object
	AcceptingToInactive
	
	TransitionType
	Mandatory

	HasComponent
	Object
	RejectingToInactive
	
	TransitionType
	Mandatory

	HasComponent
	Object
	ToActive
	
	TransitionType
	Mandatory

	HasComponent
	Object
	ToAccepting
	
	TransitionType
	Mandatory

	HasComponent
	Object
	ToCancelling
	
	TransitionType
	Mandatory

	HasComponent
	Object
	ToRejecting
	
	TransitionType
	Mandatory

	HasComponent
	Method
	Cancel
	
	
	Mandatory

	HasComponent
	Method
	No
	
	
	Mandatory

	HasComponent
	Method
	Ok
	
	
	Mandatory

	
	
	
	
	
	

The YesNoCancelDialog provides a single active state which can be used be a Server to indicate the need for a Client response. A Server can use the ToActive transition to set the Condition into the Active state. A Client can issue the Ok and Cancel Methods inherited from the OkCancelDialogStateMachineType to respond and return the Condition to the Inactive state. A Client can also issue the No Method to respond with a rejection and return the Condition to the Inactive state.

Table 48 – YesNoCancelDialogSubStateStateMachineType States and Transitions

	BrowseName
	References
	Target BrowseName
	Value
	Target TypeDefinition
	Notes

	States

	Inactive
	HasProperty
	StateNumber
	0
	PropertyType
	

	Active
	HasProperty
	StateNumber
	1
	PropertyType
	

	Accepting
	HasProperty
	StateNumber
	2
	PropertyType
	

	Canceling
	HasProperty
	StateNumber
	3
	PropertyType
	

	Rejecting
	HasProperty
	StateNumber
	4
	PropertyType
	

	ToAccepting
	HasProperty
	Transitionnumber
	0
	PropertyType
	

	ToActive
	HasProperty
	Transitionnumber
	1
	PropertyType
	

	ToCancelling
	HasProperty
	Transitionnumber
	2
	PropertyType
	

	ToRejecting
	HasProperty
	Transitionnumber
	3
	PropertyType
	

	AcceptingToInactive
	HasProperty
	Transitionnumber
	4
	PropertyType
	

	CancellingtoInactive
	HasProperty
	Transitionnumber
	5
	PropertyType
	

	RejectingtoInactive
	HasProperty
	Transitionnumber
	6
	PropertyType
	

	

	Transitions

	ToAccepting
	FromState
	Active
	
	StateType
	

	
	ToState
	Accepting
	
	StateType
	

	
	HasCause
	Ok
	
	Method
	see 5.3.7

	ToActive
	FromState
	Inactive
	
	StateType
	

	
	ToState
	Active
	
	StateType
	

	
	HasEffect
	YesNoCancelDialogType
	
	
	

	ToCancelling
	FromState
	Active
	
	StateType
	

	
	ToState
	Cancelling
	
	StateType
	

	
	HasCause
	Cancel
	
	Method
	see 5.3.12

	ToRejecting
	FromState
	Active
	
	StateType
	

	
	ToState
	Rejecting
	
	StateType
	

	
	HasCause
	No
	
	Method
	

	AcceptingToInactive
	FromState
	Accepting
	
	StateType
	

	
	ToState
	Inactive
	
	StateType
	

	
	HasEffect
	YesNoCancelDialogType
	
	
	

	CancellingtoInactive
	FromState
	Cancelling
	
	StateType
	

	
	ToState
	Inactive
	
	StateType
	

	
	HasEffect
	YesNoCancelDialogType
	
	
	

	RejectingtoInactive
	FromState
	Rejecting
	
	StateType
	

	
	ToState
	Inactive
	
	StateType
	

	
	HasEffect
	YesNoCancelDialogType
	
	
	

5.3.17 No Method

The No Method is used to reject a YesNoCancelDialogType instance and set it to the inactive state. The No Method is invoked using the UA Call Service as described in Part 4. The details of the No Method are described in Table 49.

Table 49 – No Method Definition

	Attribute
	Value

	BrowseName
	No

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	GeneratesEvent
	
	
	
	AuditConditionDialogEventType
	Mandatory

This Method has no arguments other than the standard arguments associated with the call Service which includes the StatusCode and diagnostic information.
This Method must generate an error code for calls that do not succeed in a transition to the Inactive state; this includes the case where the state machine is already in the Inactive state.
5.3.18 AuditConditionDialogEventType

This EventType is used to indicate a Dialog change of a Condition. It is formally defined in Table 50.

Table 50 – AuditConditionDialogEventType Definition

	Attribute
	Value

	BrowseName
	AuditConditionDialogEventType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Inherit the Properties of the AuditConditionEventType defined in section 5.2.6

	
	
	
	
	
	

This EventType inherits all Properties of the AuditConditionEventType defined in section 5.3.7 The inherited Property SourceNode must be filled with the NodeId of the StateMachine instance were the State changed. If the State changed in a sub-machine, then the NodeId of the sub-machine has to be used. The SourceName for Events of this type shall be “Method/” and the Service that generated the Event (e.g. No Method).

The OldState Property reflects the CurrentStateNumber (defined in Part 5) prior the change.

The NewState Property reflects the new CurrentStateNumber after the change.

5.4 Acknowledgeable Condition Model
5.4.1 General
The Acknowledgeable Condition model extends the Condition model. An acknowledged sub-state machine is added to the Enabled state defined by the Condition model. It is envisioned that multiple sub-types of this type will be created; each sub-type will further extend the Enabled state with the addition of sub-state machines.
Acknowledgeable Conditions are represented by the AcknowledgeableConditionType in UA. Figure 20 provides an illustration of the AcknowledgeableConditon model. This illustration is not intended to be a complete definition. The model is formally defined in the following subsections.

[image: image20.emf]AcknowledgeableCondition

Type

AcknowledgeState

MachineType

State

ConfirmState

MachineType

AcknowledgebleCondition

StateMachineType

AckPreviousState

MachineType

ConditionType

ConditionStateMachine

Type

StateMachine

Type

BaseCondition

Type

BaseEvent

Type

Figure 20 – AcknowledgeableCondition Model

5.4.2 AcknowledgeableConditionType

The AcknowledgeableConditionType extends the ConditionType by defining acknowledgement characteristics. It is an abstract type. Instances of this type are not allowed. The type exists to allow grouping of subtypes. The AcknowledgeableConditionType shares the Event model of the ConditionType described in clause 5.2. The model is illustrated in Figure 21.

[image: image21.emf]Condition

Type

Acknowledgeable

ConditionType

State

ConditionStateMachine

Type

AcknowledgeableCondition

StateMachineType

Enabled:

StateType

State

StateMachineType

Enabled:

StateType

AckPrevious

RelatedEventId

Figure 21 - AcknowledgeableConditionStateMachine Overview
The Acknowledgeable ConditionType is formally defined in Table 51
Table 51 – AcknowledgeableConditionType Definition
	Attribute
	Value

	BrowseName
	AcknowledgeableConditionType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the ConditionType defined in clause 5.2.6

	HasSubtype
	ObjectType
	AlarmConditionType
	Defined in Clause 5.5.2

	HasComponent
	Object
	State
	
	AcknowledgeableConditionStateMachineType
	Mandatory

	HasProperty
	Variable
	AckPrevious
	Boolean
	PropertyType
	Mandatory

	HasComponent
	Method
	AcknowledgeByEventIds
	
	
	Mandatory

	HasComponent
	Method
	ConfirmByEventIds
	
	
	Mandatory

The State Object provides the state machine of the AckowledgeableConditionType. This Object is inherited from the parent ConditionType and is redefined to be a sub type of the original ConditionStateMachineType. The State Object is defined by the AcknowledgeableConditionStateMachineType that is described in clause 5.4.6. Derived types can extend the state machine by adding sub-states to the original state machine.

When the AckPrevious Variable is set to true the Server is indicating it will maintain multiple unacknowledged transitions with the expectation that a Client will, at some time, Acknowledge each individual transition that requires acknowledging. When this Variable is set to false the Server is indicating it only maintains the latest unacknowledged transition.

The AcknowledgeByEventIds and ConfirmByEventIds Methods provide a manner in which to perform operations on a group of Conditions. These Methods exist on the AcknowledgeableConditionType Object. They are defined in sections 5.4.3 and 5.4.5 respectively. These Methods will affect the state machine associated with the Condition instances Referenced by the EventIds that are passed to each Method.
5.4.3 AcknowledgeByEventIds Method

The AcknowledgeByEventIds Method is used to Acknowledge one or more Conditions. The AcknowledgeByEventIds Method is invoked on the AcknowledgeableConditionType using the UA Call Service as described in Part 4. The AcknowledgeByEventIds Method is not available from instances of AcknowledgeableConditions. The details of the AcknowledgeByEventIds Method are described in Table 52.

Table 52 – AcknowledgeByEventIds Method Definition

	Attribute
	Value

	BrowseName
	AcknowledgeByEventIds

	Executable
	Depends on the state of the ackState

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	HasProperty
	Variable
	InputArguments
	Argument[]
	PropertyType
	Mandatory

	HasProperty
	Variable
	OutputArguments
	Argument[]
	PropertyType
	Mandatory

	GeneratesEvent
	
	
	
	AuditConditionAckEventType

	Mandatory

The arguments of this Method have the Value defined in Table 64.

Table 53 – AcknowledgeByEventIds Method Arguments

	Name
	Type
	Description

	InputArguments
	
	

	
EventIds
	ByteString []
	An array of EventIds

	
Comment
	LocalizedText
	Optional Comment to apply to all Events in the EventIds Array

	OutputArguments
	
	

	
AcknowledgeResponse
	StatusResponseDataType[]
	An array of status responses

When calling the AcknowledgeByEventIds Method the EventId of all acknowledgeable transitions to be acknowledged are included in the EventIds argument. The EventId is used by the Server to identify which specific Event occurrence (state transition) is being acknowledged. An optional comment can also be provided in the comment argument which will be applied to all transitions included in the EventIds argument. If the optional comment was not provided with the AcknowledgeByEventIds Method then the Comment Variable associated with each Condition identified by the EventIds argument will be assigned a null value.
The invocation of this Method will result in a state transition of the individual state machines associated with the Condition represented by the passed EventIds. The Acknowledged, Comment and AckPreviousRequired state machines may be affected. The actual state machine(s) that are affected will depend on the parameters that are passed.

If the Server supports previous acknowledgements the AckPreviousRequired Variable of the AcknowledgeableConditionStateMachine type will be true. In this case an EventId of a previous acknowledgeable transition can be provided and will result in that past transition being acknowledged. This Method is the only manner in which the acknowledgement of previous events can be accomplished. If the Server does not support previous acknowledgements and the EventId requested is not the latest acknowledgeable transition the current state will remain unacknowledged and an error result will be returned.
If the EventId is of the latest acknowledgeable transition then the Acknowledged state machine associated with the instance will transition in the same manner that it would if the Acknowledge Method was call on the particular Condition instance. If a comment is included then the Comment State machine will transition in the same manner as if the AddComment Method was called on the particular Condition instance
For each Condition to be acknowledged the Method returns an AcknowledgeResponse containing the StatusCode and diagnostic information of the acknowledgement.

Acknowledgements result in the Server generating an audit Event as explained in Part 4.
5.4.4 AuditConditionAckEventType

This EventType is used to indicate a Acknowledgement of a Condition. It is formally defined in Table 50.

Table 54 – AuditConditionAckEventType Definition

	Attribute
	Value

	BrowseName
	AuditConditionAckEventType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the AuditConditionEventType defined in section 5.2.6

	
	
	
	
	
	

This EventType inherits all Properties of the AuditConditionEventType defined in section 5.3.7 The inherited Property SourceNode must be filled with the NodeId of the StateMachine instance were the State changed. If the State changed in a sub-machine, then the NodeId of the sub-machine has to be used. The SourceName for Events of this type shall be “Method/” and the Service that generated the Event (e.g. AcknowledgeByEventIds Method).

The OldState Property reflects the CurrentStateNumber (defined in Part 5) prior the change.

The NewState Property reflects the new CurrentStateNumber after the change.
5.4.5 ConfirmByEventIds Method

The ConfirmByEventIds Method is used to confirm one or more Conditions. The ConfirmByEventIds Method is invoked on the AcknowledgeableConditionType using the UA Call Service as described in Part 4. The ConfirmByEventIds Method is not available in Condition instances. The details of the ConfirmByEventIds Method are described in Table 55.

Table 55 – ConfirmByEventIds Method Definition

	Attribute
	Value

	BrowseName
	ConfirmByEventIds

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	HasProperty
	Variable
	InputArguments
	Argument[]
	PropertyType
	Mandatory

	HasProperty
	Variable
	OutputArguments
	Argument[]
	PropertyType
	Mandatory

	GeneratesEvent
	
	
	
	AuditConditionConfirmEventType
	Mandatory

The arguments of this Method have the Value defined in Table 56.

Table 56 – ConfirmByEventIds Method Arguments

	Name
	Type
	Description

	InputArguments
	
	

	
EventIds
	ByteString []
	An array of EventIds

	
Comment
	LocalizedText
	Optional Comment to apply to Events

	OutputArguments
	
	

	
ConfirmResponse
	StatusResponseDataType[]
	An array of status responses

When calling the ConfirmByEventIds Method the EventId of all confirmable transitions to be confirmed are included in the EventIds argument. The EventId is used by the Server to identify which specific Event occurrence (state transition) is being confirmed. An optional comment can also be provided in the comment argument which will be applied to all transitions included in the EventIds argument. If the optional comment was not provided with the ConfirmByEventIds Method then the Comment Variable associated with each Condition identified by the EventIds argument will be assigned a null value.
The invocation of this Method will result in state transition of the individual state machines associated with the Condition represented by the passed EventId. The Confirm and Comment state machines may be affected. The actual state machine(s) that are affected will depend on the parameters that are passed. The Confirm state machine associated with the instance will transition in the same manner that it would if the Confirm Method was called on the particular Condition instance. If a comment is included the Comment State machine will transition in the same manner as if the AddComment Method was called on the particular Condition instance.
For each Condition to be confirmed the Method returns a ConfirmResponse containing the StatusCode and diagnostic information.

 Table 57 defines the Service results specific to this Service. Common StatusCodes are defined in Part 4.

Table 57 – ConfirmByEventIds Service Result Codes

	Symbolic Id
	Description

	
	

	
	

	
	

	
	

5.4.6 AuditConditionConfirmEventType

This EventType is used to indicate a Confirm change of a Condition. It is formally defined in Table 50.

Table 58 – AuditConditionConfirmEventType Definition

	Attribute
	Value

	BrowseName
	AuditConditionConfirmEventType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Inherit the Properties of the AuditConditionEventType defined in section 5.2.6

	
	
	
	
	
	

This EventType inherits all Properties of the AuditConditionEventType defined in section 5.3.7 The inherited Property SourceNode must be filled with the NodeId of the StateMachine instance were the State changed. If the State changed in a sub-machine, then the NodeId of the sub-machine has to be used. The SourceName for Events of this type shall be “Method/” and the Service that generated the Event (e.g. ConfirmByEventIds Method).

The OldState Property reflects the CurrentStateNumber (defined in Part 5) prior the change.

The NewState Property reflects the new CurrentStateNumber after the change.
5.4.7 AcknowledgeableConditionStateMachineType

The AcknowledgeableConditionStateMachineType defines a state machine that extends the ConditionStateMachineType by adding additional sub-states, (i.e acknowledged sub-state, Confirm sub-state, etc) to its Enabled State. It is illustrated in Figure 22.

[image: image22.emf]AckPreviousRequired

StateMachineType

Condition

StateMachineType

AcknowledgeableCondition

StateMachineType

Enabled:

StateType

StateMachineType

AckPreviousRequired

Enabled:

StateType

Acknowledge

Acknowledge

StateMachineType

HasSubStateMachine

RelatedEventId

Confirm

Confirm

StateMachineType

HasSubStateMachine

HasSubStateMachine

ConfirmPrevious

StateMachineType

ConfirmPrevious

HasSubStateMachine

Figure 22 -AcknowledgeableConditionStateMachine
The AcknowledgeableConditionStateMachine is formally defined in Table 59 and in Table 60.
Table 59 – AcknowledgeableConditionStateMachineType Definition
	Attribute
	Value

	BrowseName
	AcknowledgeableConditionStateMachineType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the ConditionStateMachineType defined in clause 5.2.8

	
	
	
	
	
	

	HasComponent
	Object
	Acknowledge
	
	AcknowledgeStateMachineType
	Mandatory

	HasComponent
	Object
	Confirm
	
	ConfirmStateMachineType
	Optional

	HasComponent
	Object
	AckPreviousRequired
	
	AckPreviousStateMachineType
	Optional

	HasComponent
	Object
	ConfirmPrevious
	
	ConfirmStateMachineType
	Optional

	HasProperty
	Variable
	RelatedEventId
	ByteString
	PropertyType
	Mandatory

The RelatedEventId Variable is normally set to a value of null by the Server. When the Event Notification is a response to an Acknowledge Method this Variable is set to the EventId of the Event Notification that is being acknowledged. The Client can use this information to correlate the original Notification with the acknowledgement Notification.

The Acknowledge StateMachine defines the model used by an Operator to indicate recognition of a new Alarm. This StateMachine is activated when an Alarm is Raised. It can also be activate for any transition of any of the sub-state models of the original Condition model.

 The Confirm StateMachine defines the model used by an Operator to indicate that some action required by the Alarm has been completed. This is an optional StateMachine and not all Alarms would implement this sub-state model.
The AckPreviousRequired StateMachine defines the model used by an Operator in those cases where acknowledgement of all Alarms is required. This is an optional StateMachine and not all Alarms would implement this sub-state model. See section 5.4.15 for more details.
The ConfirmPrevious StateMachine defines the model used by an Operator in those cases where confirmation of all Alarms is required. This is an optional StateMachine and not all Alarms would implement this sub-state model. See section xxxx for more details.
Table 60 – AcknowledgeableConditionStateMachine References

	BrowseName
	References
	Target BrowseName
	Value
	Target TypeDefinition
	Notes

	States

	Enabled
	HasSubStateMachine
	Acknowledge
	
	AcknowledgeStateMachineType
	

	Enabled
	HasSubStateMachine
	AckPreviousRequired
	
	AckPreviousStateMachineType
	

	Enabled
	HasSubStateMachine
	Confirm
	
	ConfirmStateMachineType
	

	Enabled
	HasSubStateMachine
	ConfirmPrevious
	
	ConfirmStateMachineType
	

	

	Transitions

	
	
	
	
	
	

The AcknowledgeableConditionStateMachineType defines four sub-state machines for the Enabled State Acknowledge, Confirm, AckPreviousRequired and ConfirmPrevious, the last three of which are optional. These state machines are defined in XXXXX, XXXXX, XXXXX and XXXXX respectively.

5.4.8 AcknowledgeStateMachineType

The AcknowledgeStateMachineType extends the FiniteStateMachineType defined in Part 5 to define a state model for the basic Acknowledge of Conditions. The AcknowledgeStateMachineType is illustrated in Figure 23.

[image: image23.emf]Acknowledge

AcknowledgeState

MachineType

Acknowledging

:StateType

Acknowledged

:StateType

ToAcknowledging

:TransitionType

ToUnAcknowledge

:TransitionType

HasCause

Confirm

ConfirmState

MachineType

HasSubStateMachine

AcknowledgeableCondition

StateMachineType

Enabled:

StateType

Acknowledge

HasSubStateMachine

ConditionState

MachineType

StateMachine

Type

Acknowledge

ByEventIds

HasCause

ToAcknowledge

:TransitionType

UnAcknowledged

:StateType

Figure 23 – AcknowledgeStateMachine Model

The AcknowledgeStateMachineType is formally defined in Table 61 and Table 62.
Table 61 – AcknowledgeStateMachineType Definition
	Attribute
	Value

	BrowseName
	AcknowledgeStateMachineType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the FiniteStateMachineType defined in Part 5

	HasSubtype
	ObjectType
	ConfirmedStateMachineType
	Defined in Clause 5.4.12

	
	
	
	
	
	

	HasComponent
	Method
	Acknowledge
	
	
	Mandatory

	HasComponent
	Object
	UnAcknowledged
	
	StateType
	Mandatory

	HasComponent
	Object
	Acknowledged
	
	StateType
	Mandatory

	HasComponent
	Object
	Acknowledging
	
	StateType
	Mandatory

	HasComponent
	Object
	ToUnAcknowledge
	
	TransitionType
	Mandatory

	HasComponent
	Object
	ToAcknowledging
	
	TransitionType
	Mandatory

	HasComponent
	Object
	ToAcknowledge
	
	TransitionType
	Mandatory

The CurrentStateNumber Variable, inherited from the StateMachineType, contains the current Acknowledge state. The Server determines when a transition to the Unacknowledged state occurs.

Table 62 – AcknowledgeStateMachine References

	BrowseName
	References
	Target BrowseName
	Value
	Target TypeDefinition
	Notes

	States

	
	HasSubStateMachine
	Confirmed
	
	ConfirmedStateMachineType
	Optional

	Unacknowledged
	HasProperty
	StateNumber
	0
	PropertyType
	

	Acknowledged
	HasProperty
	StateNumber
	1
	PropertyType
	

	Acknowledging
	HasProperty
	StateNumber
	2
	PropertyType
	

	ToAcknowledged
	HasProperty
	TransitionNumber
	0
	PropertyType
	

	ToUnAcknowledged
	HasProperty
	TransitionNumber
	1
	PropertyType
	

	ToAcknowledging
	HasProperty
	TransitionNumber
	2
	PropertyType
	

	

	Transitions

	ToAcknowledging
	FromState
	UnAcknowledged
	
	AcknowledgedStateType
	

	
	ToState
	Acknowledging
	
	AcknowledgedStateType
	

	
	HasCause
	Acknowledge
	
	
	Method

	
	
	
	
	
	

	ToUnAcknowledged
	FromState
	Acknowledged
	
	AcknowledgedStateType
	

	
	ToState
	UnAcknowledged
	
	AcknowledgedStateType
	

	
	HasEffect
	AcknowledgeableConditionType
	
	
	

	ToAcknowledged
	FromState
	Acknowledging
	
	AcknowledgedStateType
	

	
	ToState
	Acknowledged
	
	AcknowledgedStateType
	

	
	HasEffect
	AcknowledgeableConditionType
	
	
	

[Add text about transient state]

5.4.9 Acknowledge Method

The Acknowledge Method is used to Acknowledge the current Condition. The Acknowledge Method is invoked on the AcknowledgeStateMachine type using the UA Call Service as described in Part 4. The Acknowledge Method is only available on the instance of the AcknowledgeStateMachine. The details of the Acknowledge Method are described in Table 63.

Table 63 – Acknowledge Method Definition

	Attribute
	Value

	BrowseName
	Acknowledge

	Executable
	Depends on the state of the ackState

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	HasProperty
	Variable
	InputArguments
	Argument[]
	PropertyType
	Mandatory

	GeneratesEvent
	
	
	
	AcknowledgeAuditEventType
	Mandatory

The arguments of this Method have the Value defined in Table 64.

Table 64 – Acknowledge Method Arguments

	Name
	Type
	Description

	InputArguments
	
	

	
Comment
	LocalizedText
	Optional Comment to apply to Condition

When calling the Acknowledge Method a comment can also be provided in the comment argument which will be applied to the State which was acknowledged. If the optional comment was not provided with the Acknowledge Method then the Comment Variable associated with the Condition will be assigned a null value.
Acknowledgements result in the Server generating an audit Event as explained in Part 4.

5.4.10 AuditAcknowledgeEventType
Acknowledgements result in the Server generating an AcknowledgeAuditEvent. AuditAcknowledgeEventType is formally defined in Table 65.
Table 65 – AuditAcknowledgeEventType Definition

	Attribute
	Value

	BrowseName
	AuditAcknowledgeEventType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Inherit the Properties of the AuditConditionEventType defined in Part 5

	
	
	
	
	
	

	
	
	
	
	
	

This EventType inherits all Properties of the AuditConditionEventType which is defined in section XXXXX. The inherited Property SourceNode must be filled with the NodeId of the StateMachine instance were the State changed. If the State changed in a sub-machine, then the NodeId of the sub-machine has to be used. The SourceName for Events of this type shall be “Method/” and the Service that generated the Event (e.g. Acknowledge Method).
The OldState Property reflects the CurrentStateNumber prior the change.

The NewState Property reflects the new CurrentStateNumber after the change.
5.4.11 CommentPreviousStateMachineType

The CommentPreviousStateMachineType extends the StateMachineType defined in Part 5. The state model provides support for commenting previous Conditions. Previous Conditions are those Conditions that are no longer the current Condition, but are being maintained and requiring Operator interaction. Figure 24 - CommentPreviousStateMachineType Model provides an illustration of the CommentPreviousStateMachine model. It is not intended to be a complete definition.

[image: image24.emf]LastComment:

StateType

ToCommentAdded

CommentPrevious

StateMachineType

CommentBy

EventIds

ClientUserID

Comment

StateMachineType

Enabled:

StateType

CommentPrevious

SubState

HasSubStateMachine

HasCause

ConditionStateMachine

Type

CommentAdded:

StateType

ToLastComment

Figure 24 - CommentPreviousStateMachineType Model
The model is formally defined in Table 66 and Table 67.

Table 66 – CommentPreviousStateMachineType Definition
	Attribute
	Value

	BrowseName
	CommentPreviousStateMachineType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the StateMachineType defined in Part 5

	
	
	
	
	
	

	HasProperty
	Variable
	Comment
	LocalizedText
	PropertyType
	Mandatory

	HasProperty
	Variable
	EventId
	ByteString
	PropertyType
	Mandatory

	HasProperty
	Variable
	ClientUserId
	String
	PropertyType
	Mandatory

	HasComponent
	Object
	LastComment
	
	InitialStateType
	Mandatory

	HasComponent
	Object
	CommentAdded
	
	StateType
	Mandatory

	HasComponent
	Object
	ToCommentAdded
	
	TransitionType
	Mandatory

	HasComponent
	Object
	ToLastComment
	
	TransitionType
	Mandatory

The Comment Variable contains the last comment provided. The comment may have been provided by an AcknowledgeByEventIds Method or via a CommentByEventIds Method. The Comment applies to the previous state and therefore does not affect the Retains flag. The Comment Variable must be set to null if no comment is provided. The initial value of this Variable on the creation of the state machine is null. The EventId filed must contain the EventId of the Event which was commented. The ClientUserId contains the identity of the user who inserted the most recent Comment. ClientUserID is defined in Part 5.

Table 67 – CommentPreviousStateMachine States and Transitions

	BrowseName
	References
	Target BrowseName
	Value
	Target TypeDefinition
	Notes

	States

	LastComment
	HasProperty
	StateNumber
	0
	PropertyType
	

	CommentAdded
	HasProperty
	StateNumber
	1
	PropertyType
	

	ToCommentAdded
	HasProperty
	TransitionNumber
	0
	PropertyType
	

	ToLastComment
	HasProperty
	TransitionNumber
	1
	PropertyType
	

	

	Transitions

	ToCommentAdded
	FromState
	LastComment
	
	StateType
	

	
	ToState
	CommentAdded
	
	StateType
	

	
	HasCause
	AddCommentByEventIds
	
	Method
	See 5.2.15

	ToLastComment
	FromState
	CommentAdded
	
	StateType
	

	
	ToState
	LastComment
	
	StateType
	

	
	HasEffect
	AcknowledgeableConditionType
	
	
	

The CommentAdded state is a transient state. When a comment is being added, the state transitions to CommentAdded, This state will automatically transition to LastComment as soon as the Comment is recorded by the Server. An Event is generated on the transition out of this state to the LastComment state. This transient state is included to allow Server that requires device access to complete processing the Event change with out affecting the method call. For some Servers this transient state will never exist in the address space or be observable.
5.4.12 ConfirmedStateMachineType

The ConfirmedStateMachineType
defines an optional sub-state model for the Enabled state of the AcknowledgeConditionStateMachineType. The ConfirmStateMachineType is illustrated in Figure 25. Typically the ConfirmStateMachine is used in conjunction with the AcknowledgeStateMachine, allowing an Operator to Confirm the Acknowledge action.

[image: image25.emf]Confirm

ConfirmedState

MachineType

UnConfirmed:

StateType

Confirmed:

StateType

ToConfirmed:

TransitionType

ToUnConfirmed:

TransitinType

HasCause

ConfirmBy

EventIds

HasCause

AcknowledgeState

MachineType

ConditionState

MachineType

StateMachineType

AcknowledgeableCondition

StateMachineType

Enabled:

StateType

Acknowledge

HasSubStateMachine

Confirm

HasSubStateMachine

Figure 25 – Confirmed State Machine Type

The ConfirmStateMachineType is defined in Table 68 and Table 69.

Table 68 – ConfirmedStateMachineType Definition

	Attribute
	Value

	BrowseName
	ConfirmedStateMachineType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the FiniteStateMachineType defined in Part 5

	
	
	
	
	
	

	HasComponent
	Method
	Confirm
	
	
	Mandatory

	HasComponent
	Object
	UnConfirmed
	
	InitialStateType
	Mandatory

	HasComponent
	Object
	Confirmed
	
	StateType
	Mandatory

	HasComponent
	Object
	Confirming
	
	StateType
	Mandatory

	HasComponent
	Object
	ToConfirmed
	
	TransitionType
	Mandatory

	HasComponent
	Object
	ToUnConfirmed
	
	TransitionType
	Mandatory

	HasComponent
	Object
	ToConfirming
	
	TransitionType
	Mandatory

The Confirmed state machine is used by Servers supporting a two step Acknowledge. In this case after being acknowledged the Condition would enter the acknowledged state. The Confirmed state machine would be transition by the Server to the Unconfirmed State, which would indicate that the current Condition requires a confirmation.
Table 69 – ConfirmedStateMachine References

	BrowseName
	References
	Target BrowseName
	Value
	Target TypeDefinition
	Notes

	States

	Confirmed
	HasProperty
	StateNumber
	0
	PropertyType
	

	UnConfirmed
	HasProperty
	StateNumber
	1
	PropertyType
	

	Confirming
	HasProperty
	StateNumber
	2
	PropertyType
	

	ToConfirmed
	HasProperty
	TransitionNumber
	0
	PropertyType
	

	ToConfirming
	HasProperty
	TransitionNumber
	1
	PropertyType
	

	ConfirmedToUnConfirmed
	HasProperty
	TransitionNumber
	2
	PropertyType
	

	ConfirmingToUnConfirmed
	HasProperty
	TransitionNumber
	3
	PropertyType
	

	

	Transitions

	ToConfirmed
	FromState
	Confirming
	
	AcknowledgedStateType
	

	
	ToState
	Confirmed
	
	AcknowledgedStateType
	

	
	HasEffect
	AcknowledgeableConditionType
	
	
	

	ToConfirming
	FromState
	UnConfirmed
	
	AcknowledgedStateType
	

	
	ToState
	Confirming
	
	AcknowledgedStateType
	

	
	HasCause
	Confirm
	
	Method
	

	ConfirmedToUnConfirmed
	FromState
	Confirmed
	
	AcknowledgedStateType
	

	
	ToState
	UnConfirmed
	
	AcknowledgedStateType
	

	
	HasEffect
	AcknowledgeableConditionType
	
	
	

	ConfirmingToUnConfirmed
	FromState
	Confirming
	
	AcknowledgedStateType
	

	
	ToState
	Unconfirmed
	
	AcknowledgedStateType
	

	
	
	
	
	
	

The Confirming state is a transient state. When a confirmation is being provided, the state transitions to Confirming, This state will automatically transition to Confirmed as soon as the Confirmation is recorded by the Server. An Event is generated on the transition out of this state to the Confirmed state. This transient state is included to allow a Server that requires device access to complete processing the Event change with out affecting the Method call. For some Servers this transient state will never exist in the address space or be observable.
5.4.13 Confirm Method

The Confirm Method is used to confirm one or more Conditions. The Confirm Method is invoked using the UA Call Service as described in Part 4. The Confirm Method is available from instances of the ConfirmedStateMachine type. The details of the Confirm Method are described in Table 70.

Table 70 – Confirm Method Definition

	Attribute
	Value

	BrowseName
	Confirm

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	HasProperty
	Variable
	InputArgument
	Argument[]
	PropertyType
	Mandatory

	
	
	
	
	
	

The arguments of this Method have the Value defined in Table 71.

Table 71 – Confirm Method Arguments
	Name
	Type
	Description

	InputArguments
	
	

	
Comment
	LocalizedText
	Optional Comment to apply to Conditions

The Confirm Method will confirm the Condition associated with the instance of the state machine exposing the Method. An optional comment may also be specified in the comment argument which will be applied to the Condition. If the optional comment was not provided with the Confirm Method then the Comment Variable associated with the Condition will be assigned a null value. This Method has no output arguments other than the standard arguments associated with the call Service which includes the StatusCode and diagnostic information.

5.4.14 AuditConfirmedEventType

Confirmations result in the Server generating a ConfirmedAuditEvent. It is formally defined in Table 72.
Table 72 – AuditConfirmedEventType Definition

	Attribute
	Value

	BrowseName
	ConfirmAuditEventType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Inherit the Properties of the AuditAcknowledgeEventType defined in Part 5

	
	
	
	
	
	

	
	
	
	
	
	

The ConfirmAuditEventType inherits all Properties of the AuditAcknowledgeEventType.. The inherited Property SourceNode must be filled with the NodeId of the StateMachine instance were the State changed. If the State changed in a sub-machine, then the NodeId of the sub-machine has to be used. . The SourceName for Events of this type shall be “Method/” and the Service that generated the Event (e.g. Confirm Method).
The OldState Property reflects the CurrentStateNumber prior the change.

The NewState Property reflects the new CurrentStateNumber after the change.
5.4.15 AckPreviousStateMachineType

The AckPreviousStateMachineType extends the StateMachineType defined in Part 5. The state model provides an indication that one or more previous acknowledgeable transitions remain unacknowledged. Figure 26 provides an illustration of the AckPreviousStateMachine model. It is not intended to be a complete definition. The model is formally defined in Table 73 and Table 74.

[image: image26.emf]Inactive:

StateType

Active:

StateType

ToInactive:

TransitionType

ToActive:

TransitionType

AckPreviousStateMachine

Type

ConditionStateMachine

Type

StateMachineType

AcknowledgeableCondition

StateMachineType

Enabled:

StateType

AckPrevious

Required

HasSubStateMachine

Figure 26 – AckPreviousStateMachineType Model

Table 73 – AckPreviousStateMachineType Definition
	Attribute
	Value

	BrowseName
	AckPreviousStateMachineType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the StateMachineType defined in Part 5

	
	
	
	
	
	

	HasComponent
	Object
	InActive
	
	StateType
	Mandatory

	HasComponent
	Object
	Active
	
	StateType
	Mandatory

	HasComponent
	Object
	ToInActive
	
	TransitionType
	Mandatory

	HasComponent
	Object
	ToActive
	
	TransitionType
	Mandatory

The active state indicates that one or more previous acknowledgeable transitions remain unacknowledged. The Inactive state indicates that no previous unacknowledged transitions are present. The state is not affected by the current Acknowledge state of the Condition only previous Acknowledge states.

Table 74 – AckPreviousStateMachine States and Transitions

	BrowseName
	References
	Target BrowseName
	Value
	Target TypeDefinition
	Notes

	States

	Inactive
	HasProperty
	StateNumber
	0
	PropertyType
	

	Active
	HasProperty
	StateNumber
	1
	PropertyType
	

	ToInactive
	HasProperty
	TransitionNumber
	0
	PropertyType
	

	ToActive
	HasProperty
	TransitionNumber
	0
	PropertyType
	

	

	Transitions

	ToInactive
	FromState
	Active
	
	StateType
	

	
	ToState
	InActive
	
	StateType
	

	
	HasEffect
	AcknowledgeableConditionType
	
	
	

	ToActive
	FromState
	InActive
	
	StateType
	

	
	ToState
	Active
	
	StateType
	

	
	HasEffect
	AcknowledgeableConditionType
	
	
	

	
	
	
	
	
	

5.5 .Alarm Model

5.5.1 General

The Alarm model extends the Acknowledgeable Condition model. Active, shelved and suppressed state machines are added to the Enabled state defined by the Acknowledgeable Condition model. The Alarm model is illustrated in Error! Reference source not found.. This illustration is not intended to be a complete definition. The Alarm model is formally defined in the subsequent tables.

[image: image27.emf]State

AlarmActive

AlarmCondition

Type

AlarmActiveState

MachineType

SurpressState

MachineType

ShelveState

MachineType

Shelved

Suppressed

SuppressedOr

Shelved

Condition

Type

Acknowledgeable

ConditionType

State

ConditionState

MachineType

Acknowledgeable

Condition StateMachineType

Enabled:

StateType

State

StateMachineType

HasSubStateMachine

Enabled:

StateType

AlarmState

MachineType

Enabled:

StateType

HasSubStateMachine

HasSubStateMachine

MaxTime

Shelved

Figure 27 - Alarm Model
5.5.2 AlarmConditionType

The AlarmConditionType is an abstract type that extends the AcknowledgeableCondition type by introducing an active state, suppressed state and shelved state. The AlarmConditionType shares the Event model of the AcknowledgeableConditionType described in clause 5.4.2. It is formally defined in Table 75.

Table 75 – AlarmConditionType Definition

	Attribute
	Value

	BrowseName
	AlarmConditionType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	Modelling Rule

	Subtype of the AcknowledgeableConditionType defined in clause 5.4.2

	HasComponent
	Object
	State
	
	AlarmStateMachineType
	Mandatory

	HasProperty
	Variable
	SuppressedOrShelved
	
	Boolean
	Mandatory

	HasProperty
	Variable
	MaxTimeShelved
	
	Duration
	Optional

The SuppressedOrShelved Variable is true if either the suppressed state machine is in any state other than Unsuppressed or the Shelved state machine is in any state other than the Unshelved state.
The optional Property MaxTimeShelved is used to provide and/or set the maximum duration that an Alarm Condition may be suppressed, this includes all types of suppression. The value is expressed as a duration. Many systems would use this Property to prevent permanent Shelving of an Alarm
.
5.5.3 AlarmStateMachineType

The AlarmStateMachineType defines the state machine used by the AlarmConditionType. It extends the AcknowledgeableConditionStateMachineType by adding sub-state machines representing active, shelved and suppressed. It is formally defined in Table 76 and in Table 77.
Table 76 – AlarmStateMachineType Definition
	Attribute
	Value

	BrowseName
	AlarmStateMachineType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the AcknowledgeableConditionStateMachineType

	
	
	
	
	
	

	HasComponent
	Object
	AlarmActive
	
	AlarmActiveStateMachineType
	Mandatory

	HasComponent
	Object
	AlarmShelved
	
	ShelvedStateMachineType
	Optional

	HasComponent
	Object
	AlarmSuppressed
	
	SuppressedStateMachineType
	Optional

	
	
	
	
	
	

The AlarmShelved and AlarmSuppressed state machines allow an Alarm Condition to be blocked from display. Together these two state machines result in the SuppressedOrShelved status of the Condition. When an Alarm is in one of the suppressed or shelved states, the Alarm is typically not displayed by the Client Transitions in the other StateMachines associated with the Alarm do occur, but they are not typically displayed by the Clients as long as the Alarm remains in either the suppressed or shelved states. This applies to all sub-state machines of the Enabled state of the AlarmConditionType and any subtypes of it.
The AlarmEscalated state machine is used to trigger new events for Alarms that have had their severity changed. Typically this state machine is used to automatically elevate an Alarm severity when no action has been taken on the Alarm for some pre-configured time period.

The AlarmActive sub-state machine of the AlarmStateMachineType may be further sub-typed to include traditional Alarm states such as high or low Alarms.

Table 77 – AlarmStateMachineType States and Transitions
	BrowseName
	References
	Target BrowseName
	Value
	Target TypeDefinition
	Notes

	States

	Enabled
	HasSubStateMachine
	AlarmActive
	
	AlarmActiveStateMachineType
	

	
	HasSubStateMachine
	AlarmShelved
	
	ShelvedStateMachineType
	

	
	HasSubStateMachine
	AlarmSuppressed
	
	SuppressedStateMachineType
	

	
	HasSubStateMachine
	AlarmEscalated
	
	EscalatedStateMachineType
	

	

The AlarmActive, AlarmShelved and AlarmSuppressed are all sub-state machines of the Enabled state of the AcknowledgeableConditionStateMachine. These Substate machines are defined in sections 5.5.4, 5.5.5 and 5.5.6 respectively.

5.5.4 AlarmActiveStateMachineType

The AlarmActiveStateMachineType defines the sub-state machine that represents the active state of the AlarmStateMachineType defined in 5.5.3. The AlarmActive state machine model is illustrated in Figure 28.

[image: image28.emf]AlarmActiveStateMachine

Type

Inactive:

StateType

Active:

StateType

ToActive:

TransitionType

Toinactive:

TransitionType

AcknowledgeableCondition

StateMachineType

Enabled:

StateType

AlarmActive

HasSubStateMachine

ConditionStateMachine

Type

StateMachineType

AlarmStateMachineType

Enabled:

StateType

Enabled:

StateType

Figure 28 - AlarmActiveStateMachine
 The state machine definition is defined in Table 78. The state and transition of this state machine are described in Table 79.
Table 78 – AlarmActiveStateMachine Definition
	Attribute
	Value

	BrowseName
	AlarmActiveStateMachineType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the FiniteStateMachineType defined in Part 5

	
	
	
	
	
	

	HasComponent
	Object
	InActive
	
	StateType
	Mandatory

	HasComponent
	Object
	Active
	
	StateType
	Mandatory

	HasComponent
	Object
	ToInActive
	
	TransitionType
	Mandatory

	HasComponent
	Object
	ToActive
	
	TransitionType
	Mandatory

The transitions of Conditions to the Inactive and Active states are trigger by Server specific actions. In some cases the Active or Inactive state will have sub-state models that further define that state.
Table 79 – AlarmActiveStateMachine States and Transitions

	BrowseName
	References
	Target BrowseName
	Value
	Target TypeDefinition
	Notes

	States

	Inactive
	HasProperty
	StateNumber
	0
	PropertyType
	

	Active
	HasProperty
	StateNumber
	1
	PropertyType
	

	
	
	
	
	
	

	

	Transitions

	ToInactive
	FromState
	Active
	
	StateType
	

	
	ToState
	InActive
	
	StateType
	

	
	HasEffect
	AlarmConditionType
	
	
	

	ToActive
	FromState
	InActive
	
	StateType
	

	
	ToState
	Active
	
	StateType
	

	
	HasEffect
	AlarmConditionType
	
	
	

	
	
	
	
	
	

5.5.5 ShelvedStateMachineType
The ShelvedStateMachineType defines a sub-state machine that represents an advanced Alarm filtering model. This model is illustrated in Figure 29.

The state model supports three types of Shelving
. They are One Shot Shelving, Timed Shelving and Manual Shelving. They are illustrated in Figure 30. The illustration includes the allowed transitions between the various sub-states. Shelving is an Operator initiated activity.
In Manual Shelving
, an Alarm remains shelved until an Operator unshelves the Alarm. This type of Shelving is typically used to remove a Condition that is associated with an instrument or device that is in a known inoperative state (i.e. a broken sensor or a part of a plant that is shutdown).

 In One Shot Shelving, a user requests that an Alarm be Shelved for its current active state. This type of Shelving is typically used when an Alarm is continually occurring on a boundary (i.e. a Condition is jumping between High Alarm and HighHigh Alarm, always in the active state). The One Shot Shelving will automatically clear when an Alarm returns to an inactive state.

In Timed Shelving, a user specifies that an Alarm be shelved for a fixed time period. This type of Shelving is quite often used to block nuisance Alarms. For example, an Alarm that occurs more then 10 times in a minute may get shelved for a few minutes.
In all states, the Unshelve Method can be applied to cause a transition to the Unshelve state, this includes UnShelving an Alarm that is in the TimedShelve state before the time has expired and the OneShotShelve state without a transition to an inactive state.

[image: image29.emf]OneShotShelve

ShelvedStateMachine

Type

TimedShelved:

StateType

OneShotShelved:

StateType

UnShelvedToTimedShelved:

TransitionType

ManualShelvedToTimedShelved

: TransitionType

HasCause

AcknowledgeableCondition

StateMachineType

Enabled:

StateType

AlarmShelved

HasSubStateMachine

ConditionStateMachine

Type

StateMachineType

AlarmStateMachineType

Enabled:

StateType

Enabled:

StateType

ManualShelvedToUnshelved:

TransitionType

TimedShelvedToManualShelved:

TransitionType

ManualShelved:

StateType

UnShelved:

StateType

UnShelvedToManualShelved:

TransitionType

UnShelvedToOneShotShelved:

TransitionType

TimedShelvedToUnshelved:

TransitionType

OneShotShelvedToUnShelved:

TransitionType

UnShelve

HasCause

HasCause

HasCause

TimedShelve

HasCause

HasCause

ManualShelve

HasCause

HasCause

HasCause

OneShotShelvedToManualShelved:

TransitionType

TimedShelvedToOneShotShelved:

TransitionType

ManualShelvedToOneShotShelved:

TransitionType

HasCause

HasCause

OneShotShelvedToTimedShelved:

TransitionType

HasCause

Figure 29 - Shelved State Machine Model

The Shelved state machine includes a hierarchy of sub -states. The state machine supports all transitions between Unshelved, OneShotShelved, TimedShelved and ManualShelved.

[image: image30.emf]Shelved

Tiimed

Shelved

Oneshot

Shelved

Unshelved

Manual Shelve call

UnShelve call

Timed Shelve call

Any Transition Occurs

One Shot Shelve call

Time Expired

UnShelve call

UnShelve call

Manual Shelve call

Manual Shelve call

Timed Shelve call

Timed Shelve call

One Shot Shelve call

One Shot Shelve call

Figure 30 - Shelve state transitions
In Figure 30 all but two transitions are caused by Method calls, the “Time Expired” transition is simply a system generated transition that occurs when the time value defined as part of the “Timed Shelved Call” has expired. The “Any Transition Occurs” transition is also a system generated transition; this transition is generated when the Condition’s Active State model is transitioned into an Inactive state.

The state machine is formally defined in Table 80.

Table 80 –ShelvedStateMachine Definition
	Attribute
	Value

	BrowseName
	ShelvedStateMachineType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the FiniteStateMachineType defined in Part 5

	
	
	
	
	
	

	HasComponent
	Object
	UnShelved
	
	StateType
	Mandatory

	HasComponent
	Object
	ManualShelved
	
	StateType
	Mandatory

	HasComponent
	Object
	TimedShelved
	
	StateType
	Mandatory

	HasComponent
	Object
	OneShotShelved
	
	StateType
	Mandatory

	
	
	
	
	
	

	HasComponent
	Object
	UnshelvedToManualShelved
	
	TransitionType
	Mandatory

	HasComponent
	Object
	ManualShelvedToUnshelved
	
	TransitionType
	Mandatory

	HasComponent
	Object
	ManualShelvedToTimedShelved
	
	TransitionType
	Mandatory

	HasComponent
	Object
	ManualShelvedToOneShotShelved
	
	TransitionType
	Mandatory

	HasComponent
	Object
	UnshelvedToTimedShelved
	
	TransitionType
	Mandatory

	HasComponent
	Object
	TimedShelvedToUnshelved
	
	TransitionType
	Mandatory

	HasComponent
	Object
	TimedShelvedToManualShelved
	
	TransitionType
	Mandatory

	HasComponent
	Object
	TimedShelvedToOneShotShelved
	
	TransitionType
	Mandatory

	HasComponent
	Object
	UnshelvedToOneShotShelved
	
	TransitionType
	Mandatory

	HasComponent
	Object
	OneShotShelvedToUnshelved
	
	TransitionType
	Mandatory

	HasComponent
	Object
	OneShotShelvedToTimedShelved
	
	TransitionType
	Mandatory

	HasComponent
	Object
	OneShotShelvedToManualShelved
	
	TransitionType
	Mandatory

	
	
	
	
	
	

	HasComponent
	Method
	TimedShelve
	
	
	Mandatory

	HasComponent
	Method
	OneShotShelve
	
	
	Mandatory

	HasComponent
	Method
	ManualShelve
	
	
	Mandatory

	HasComponent
	Method
	Unshelve
	
	
	Mandatory

This state machine supports four active states; Unshelved, ManualShelved, TimedShelved and OneShotShelved. It also supports twelve transitions. The state and transition of this state machine are further described in Table 81. This state machine also supports four Methods; TimedShelve, OneShotShelve, ManualShelve and UnShelve. These Methods are described in sections 5.5.9, 5.5.10, 5.5.7 and 5.5.8 respectively.
Table 81 – ShelvedStateMachine States and Transitions

	BrowseName
	References
	Target BrowseName
	Value
	Target TypeDefinition
	Notes

	States

	UnShelved
	HasProperty
	StateNumber
	0
	PropertyType
	

	Manualshelved
	HasProperty
	StateNumber
	1
	PropertyType
	

	TimedShelved
	HasProperty
	StateNumber
	2
	PropertyType
	

	OneShotShelved
	HasProperty
	StateNumber
	3
	PropertyType
	

	UnshelvedToManualShelved
	HasProperty
	TransitionNumber
	0
	PropertyType
	

	
	
	
	
	
	

	

	Transitions

	UnshelvedToManualShelved
	FromState
	Unshelved
	
	StateType
	

	
	ToState
	ManualShelved
	
	StateType
	

	
	HasEffect
	AlarmConditionType
	
	
	

	
	HasCause
	Shelve
	
	Method
	

	UnshelvedToTimedSelved
	FromState
	Unshelved
	
	StateType
	

	
	ToState
	TimedShelved
	
	StateType
	

	
	HasEffect
	AlarmConditionType
	
	
	

	
	HasCause
	TimedShelve
	
	Method
	

	UnshelvedToOneShotSelved
	FromState
	Unshelved
	
	StateType
	

	
	ToState
	OneShotShelved
	
	StateType
	

	
	HasEffect
	AlarmConditionType
	
	
	

	
	HasCause
	OneShotShelve
	
	Method
	

	MaualShelvedToUnshelved
	FromState
	ManualShelved
	
	StateType
	

	
	ToState
	Unshelved
	
	StateType
	

	
	HasEffect
	AlarmConditionType
	
	
	

	
	HasCause
	Unshelve
	
	Method
	

	ManualShelvedToTimedSelved
	FromState
	ManualShelved
	
	StateType
	

	
	ToState
	TimedSelved
	
	StateType
	

	
	HasEffect
	AlarmConditionType
	
	
	

	
	HasCause
	TimedShelve
	
	Method
	

	ManualShelvedToOneShotSelved
	FromState
	ManualShelved
	
	StateType
	

	
	ToState
	OneShotSelved
	
	StateType
	

	
	HasEffect
	AlarmConditionType
	
	
	

	
	HasCause
	OneShotShelve
	
	Method
	

	TimedShelvedToUnshelved
	FromState
	TimedShelved
	
	StateType
	

	
	ToState
	Unshelved
	
	StateType
	

	
	HasEffect
	AlarmConditionType
	
	
	

	TimedShelvedToManualShelved
	FromState
	TimedShelved
	
	StateType
	

	
	ToState
	ManualShelved
	
	StateType
	

	
	HasEffect
	AlarmConditionType
	
	
	

	
	HasCause
	ManualShelve
	
	Method
	

	TimedShelvedToOneShotShelved
	FromState
	TimedShelved
	
	StateType
	

	
	ToState
	OneShotShelved
	
	StateType
	

	
	HasEffect
	AlarmConditionType
	
	
	

	
	HasCause
	OneShotShelving
	
	Method
	

	OneShotShelvedToUnshelved
	FromState
	OneShotShelved
	
	StateType
	

	
	ToState
	Unshelved
	
	StateType
	

	
	HasEffect
	AlarmConditionType
	
	
	

	OneShotShelvedToShelved
	FromState
	OneShotShelved
	
	StateType
	

	
	ToState
	ManualShelved
	
	StateType
	

	
	HasEffect
	AlarmConditionType
	
	
	

	
	HasCause
	ManualShelve
	
	Method
	

	OneShotShelvedToTimedShelved
	FromState
	OneShotShelved
	
	StateType
	

	
	ToState
	TimedShelved
	
	StateType
	

	
	HasEffect
	AlarmConditionType
	
	
	

	
	HasCause
	TimedShelve
	
	Method
	

5.5.6 SuppressStateMachineType
The SuppressStateMachineType defines a sub -state machine that represents an advanced Alarm filter model. This model is illustrated in Figure 31.

[image: image31.emf]SurpressStateMachine

Type

ToUnsuppressed:

TransitionType

ToSuppressed:

TransitionType AcknowledgeableCondition

StateMachineType

Enabled:

StateType

Alarm

Suppress

HasSubStateMachine

ConditionStateMachine

Type

StateMachineType

AlarmStateMachineType

Enabled:

StateType

Enabled:

StateType

Suppressed:

StateType

Unsuppressed:

StateType

Figure 31 - Suppressed State machine
The state machine is defined in Table 82. The state and transition of this state machine are described in Table 83.

Table 82 – SuppressStateMachine Definition
	Attribute
	Value

	BrowseName
	SuppressStateMachineType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the StateMachineType defined in Part 5

	
	
	
	
	
	

	HasComponent
	Object
	Unsuppressed
	
	StateType
	Mandatory

	HasComponent
	Object
	Suppressed
	
	StateType
	Mandatory

	HasComponent
	Object
	ToUnsuppressed
	
	TransitionType
	Mandatory

	HasComponent
	Object
	ToSuppressed
	
	TransitionType
	Mandatory

This state machine provides no Methods to trigger state transitions. The SuppressStateMachine is usually used internally by a Server to automatically Suppress Alarms due to other system specific actions. For example a system may be configured to Suppress Alarms that are associated with machinery that is shutdown, such as a low level Alarm for a tank that is currently not in use.
Table 83 – SuppressStateMachine States and Transitions

	BrowseName
	References
	Target BrowseName
	Value
	Target TypeDefinition
	Notes

	States

	Unsuppressed
	HasProperty
	StateNumber
	0
	PropertyType
	

	Suppressed
	HasProperty
	StateNumber
	1
	PropertyType
	

	

	Transitions

	ToUnsppressed
	FromState
	Suppressed
	
	StateType
	

	
	ToState
	Unsuppressed
	
	StateType
	

	
	HasEffect
	AlarmConditionType
	
	
	

	ToSuppressed
	FromState
	Unsuppressed
	
	StateType
	

	
	ToState
	Suppressed
	
	StateType
	

	
	HasEffect
	AlarmConditionType
	
	
	

	
	
	
	
	
	

5.5.7 ManualShelve Method

The ManualShelve Method is used to set the State of an AlarmConditionType instance to the Shelved state. The ManualShelve Method is invoked using the UA Call Service as described in Part 4. The details of the ManualShelve Method are described in Table 84.

Table 84 – Shelving Method Definition

	Attribute
	Value

	BrowseName
	ManualShelve

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	
	
	
	
	
	

	
	
	
	
	
	

This Method has no arguments other than the standard arguments associated with the call Service which includes the StatusCode and diagnostic information.

This Method must generate an error code for calls that do not succeed in a transition to ManualShelve state; this includes the case where the state machine is already in the ManualShelve state.

5.5.8 Unshelve Method

The Unshelve Method is used to set the State of an AlarmConditionType instance to the unshelved state. The Unshelve Method is invoked using the UA Call Service as described in Part 4. The details of the Unshelve Method are described in Table 85.

Table 85 – Unshelve Method Definition

	Attribute
	Value

	BrowseName
	Unshelve

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	
	
	
	
	
	

This Method has no arguments other than the standard arguments associated with the call Service which includes the StatusCode and diagnostic information.

This Method must generate an error code for calls that do not succeed in a transition to the UnShelved state; this includes the case where the state machine is already in the Unshelved state.
5.5.9 TimedShelve Method

The TimedShelve Method is used to set the State of a AlarmConditionType instance to the TimedShelved state. The TimedShelve Method is invoked using the UA Call Service as described in Part 4. The details of the TimedShelve Method are described in Table 86.

Table 86 – TimedShelve Method Definition

	Attribute
	Value

	BrowseName
	TimedShelve

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	HasProperty
	Variable
	InputArgument
	Argument[]
	PropertyType
	Mandatory

	
	
	
	
	
	

The arguments of this Method have the Value defined in Table 87.

Table 87 – Arguments of TimedShelving Method

	Name
	Type
	Description

	InputArguments
	
	

	
Time
	Duration
	Time period to shelve

	
	
	

	
	
	

The Time argument provides the duration for which the Condition is to be shelved. In some systems the length of time covered by this duration may be limited and the Server may generate an error refusing the provided duration.

Table 25 defines the Service results specific to this Service. Common StatusCodes are defined in Part 4.

Table 88 – TimedShelving Result Codes

	Symbolic Id
	Description

	GreaterThanMaxDuration
	The provided duration exceeds the maximum duration allowed by the Server for an Alarm Shelving operation

	LessThanMinDuration
	The provided duration is less than the minimum duration allowed by the Server for an Alarm Shelving operation

	
	

	
	

5.5.10 OneShotShelve Method

The OneShotShelve Method is used to set the State of an AlarmConditionType instance to the OneShotShelved state. The OneShotShelve Method is invoked using the UA Call Service as described in Part 4. The details of the OneShotShelve Method are described in Table 89.

Table 89 – OneShotShelve Method Definition

	Attribute
	Value

	BrowseName
	OneShotShelve

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	
	
	
	
	
	

This Method has no arguments other than the standard arguments associated with the call Service which includes the StatusCode and diagnostic information.

This Method must generate an error code for calls that do not succeed in a transition to the OneShotShelve state; this includes the case where the state machine is already in the OneShotShelve state.

5.5.11 ShelvedAuditEventType
Shelved Alarms result in the Server generating a ShelvedAuditEvent. It is formally defined in Table 90.
Table 90 – ShelvedAuditEventType Definition

	Attribute
	Value

	BrowseName
	ShelvedAuditEventType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the ConditionEnabledAuditEventType defined in Part 5

	HasProperty
	Variable

	Time
	Integer
	PropertyType
	Optional

	
	
	
	
	
	

The ShelvedAuditEventType inherits all Properties of the ConditionEnabledAuditEventType. The inherited Property SourceNode must be filled with the NodeId of the StateMachine instance where the State changed. If the State changed in a sub-machine, then the NodeId of the sub-machine shall be used. The SourceName for Events of this type shall
 be “Method/” and the Service that generated the Event (e.g. Confirm Method).
The Time Property reflects the time Parameter on the TimedShelve Method,for other Shelved methoud this parameter may be omitted.

5.5.12 ProcessAlarmType
The ProcessAlarmType is an abstract type used to classify various Condition types into a group representing Conditions related to the process itself. It is illustrated in Figure 32 and it is formally defined in Table 91. A Server may elect to use the full set of sub-states defined for each type, some sub set of the sub-states or may extend the defined sub-states. In short the sub-states are recommendations only.

[image: image32.emf]AcknowledgeableCondition

StateMachineType

ConditionState

MachineType

StateMachineType

AlarmState

MachineType

AlarmActiveState

MachineType

MultiLevelAlarmActive

StateMachineType

MultiLevelAlarm

StateMachineType

MultiDeviationAlarm

StateMachineType

MultiRateOfChange

AlarmStateMachineType

MultiDeviationAlarmActive

StateMachineType

MultiRateOfChangeAlarm

ActiveStateMachineType

MultiActive

StateMachine

Figure 32 - Process Alarm Type State machine Tree

[image: image33.emf]AlarmCondition

Type

Condition

Type

Acknowledgeable

ConditionType

ProcessAlarm

Type

LevelAlarm

Type

Deviation

AlarmType

RateOfChange

AlarmType

SingleLevel

AlarmType

MultipleLevel

AlarmType

SingleDeviation

AlarmType

MultipleDeviation

AlarmType

SingleRateOf

ChangeAlarmType

MultipleRateOf

ChangeAlarmType

Conditions can be modelled as a single Condition with multiple sub-states or they may be modelled as individual Conditions and grouped together using the GroupsConditions ReferenceType. Using individual Conditions has the advantage of allowing the Client to present all Conditions within the group, or some subset. The sub-state approach ensures each sub-state is mutually exclusive.

Table 91 – ProcessAlarmType Definition

	Attribute
	Value

	BrowseName
	ProcessAlarmType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	Modelling
Rule

	Inherits the Properties of the AlarmConditionType defined in clause 5.5.1, i.e. it has HasProperty References to the same Nodes

	HasSubtype
	ObjectType
	LevelAlarmType
	Defined in Clause 5.5.13

	HasSubtype
	ObjectType
	DeviationAlarmType
	Defined in Clause 5.5.15

	HasSubtype
	ObjectType
	RateOfChangeAlarmType
	Defined in Clause

5.5.13 Common StateMachines
[xxxx]

5.5.13.1.1 Overview

This section describes state machines that are shared by multiple alarm models. It also provides an overview of some common
5.5.13.1.2 MultiActiveStateMachineType

The MultiActiveStateMachineType defines the state machine used by multiple alarm types. It is illustrated in figure XXXXX.

[image: image34.emf]StateMachineType

Low:

StateType

High:

StateType

MultiActive

StateMachineType

LowLow:

StateType

HighHigh:

StateType

HighHighToHigh:

TransitionType

InactiveToHigh:

TransitionType

HighToHighHigh:

TransitionType

InactiveToHighHigh:

TransitionType

LowToLowLow:

TransitionType

LowToInactive:

TransitionType

HighToInactive:

TransitionType

HIghHighToInactive:

TransitionType

InactiveToLow:

TransitionType

LowLowToLow:

TransitionType

InactiveToLowLow:

TransitionType

LowLowToInactive:

TransitionType

Figure 33 - MultiActiveState Machine
It is created by extending the StateMachineType. It is formally defined in REF _Ref209428484 \h
 * MERGEFORMAT and the state transition are described in XXXXXX
Table 92 – MultiActiveStateMachineType Definition

	Attribute
	Value

	BrowseName
	MultiActiveStateMachineType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the StateMachineType

	HasComponent
	Object
	HighHigh
	
	StateType
	Optional

	HasComponent
	Object
	High
	
	StateType
	Optional

	HasComponent
	Object
	Low
	
	StateType
	Optional

	HasComponent
	Object
	LowLow
	
	StateType
	Optional

	HasComponent
	Object
	InactiveToLowLow:
	
	TransitionType
	Optional

	HasComponent
	Object
	LowToLowLow:
	
	TransitionType
	Optional

	HasComponent
	Object
	InactiveToLow:
	
	TransitionType
	Optional

	HasComponent
	Object
	LowLowToLow:
	
	TransitionType
	Optional

	HasComponent
	Object
	LowToInactive:
	
	TransitionType
	Optional

	HasComponent
	Object
	LowLowToInactive:
	
	TransitionType
	Optional

	HasComponent
	Object
	InactiveToHighHigh:
	
	TransitionType
	Optional

	HasComponent
	Object
	HighToHighHigh
	
	TransitionType
	Optional

	HasComponent
	Object
	InactiveToHigh:
	
	TransitionType
	Optional

	HasComponent
	Object
	HighHighToHigh:
	
	TransitionType
	Optional

	HasComponent
	Object
	HighToInactive:
	
	TransitionType
	Optional

	HasComponent
	Object
	HighHighToInactive:
	
	TransitionType
	Optional

]
	
	
	
	
	

Table 93 – MultiActiveStateMachineType States and Transitions

	BrowseName
	References
	Target BrowseName
	Value
	Target TypeDefinition
	Notes

	States

	HighHigh
	HasProperty
	StateNumber
	0
	PropertyType
	

	High
	HasProperty
	StateNumber
	1
	PropertyType
	

	Low
	HasProperty
	StateNumber
	2
	PropertyType
	

	LowLow
	HasProperty
	StateNumber
	3
	PropertyType
	

	

	Transitions

	InactiveToHigh
	FromState
	Inactive

	
	StateType
	

	
	ToState
	High
	
	StateType
	

	
	HasEffect
	AlarmConditionType
	
	
	

	HighHighToHigh
	FromState
	HighHigh
	
	StateType
	

	
	ToState
	High
	
	StateType
	

	
	HasEffect
	AlarmConditionType
	
	
	

	InactiveToHighHigh
	FromState
	Inactive
	
	StateType
	

	
	ToState
	HighHigh
	
	StateType
	

	
	HasEffect
	AlarmConditionType
	
	
	

	HighToHighHigh
	FromState
	High
	
	StateType
	

	
	ToState
	HighHigh
	
	StateType
	

	
	HasEffect
	AlarmConditionType
	
	
	

	HighToInactive
	FromState
	High
	
	StateType
	

	
	ToState
	Inactive
	
	StateType
	

	
	HasEffect
	AlarmConditionType
	
	
	

	HighHighToInactive
	FromState
	HighHigh
	
	StateType
	

	
	ToState
	Inactive
	
	StateType
	

	
	HasEffect
	AlarmConditionType
	
	
	

	LowToInactive
	FromState
	Low
	
	StateType
	

	
	ToState
	Inactive
	
	StateType
	

	
	HasEffect
	AlarmConditionType
	
	
	

	LowLowToInactive
	FromState
	LowLow
	
	StateType
	

	
	ToState
	Inactive
	
	StateType
	

	
	HasEffect
	AlarmConditionType
	
	
	

	InactiveToLow
	FromState
	Inactive
	
	StateType
	

	
	ToState
	Low
	
	StateType
	

	
	HasEffect
	AlarmConditionType
	
	
	

	LowLowToLow
	FromState
	LowLow
	
	StateType
	

	
	ToState
	Low
	
	StateType
	

	
	HasEffect
	AlarmConditionType
	
	
	

	InactiveToLowLow
	FromState
	Inactive
	
	StateType
	

	
	ToState
	Low
	
	StateType
	

	
	HasEffect
	AlarmConditionType
	
	
	

	LowToLowLow
	FromState
	Low
	
	StateType
	

	
	ToState
	LowLow
	
	StateType
	

	
	HasEffect
	AlarmConditionType
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

The MultiActiveStateMachine defines the substate machine that represents the actual level of a multilevel Alarm when it is in the active state. The substate machine defined here includes high, low, highhigh and lowlow states. This model also includes in its transition state a series of transition to and from a parent state, the inactive state. This state machine as it is defined must be used as a sub state machine for a state macihine which has an active state. This active state could be part of a “level” Alarm or “deviation” alarm or any other alarm state machine.
 The LowLow, Low, High, HighHigh are list since these are typical for many industries. Vendors may extend this definition to include additional levels; they may also omit states in an instance. See section xxxxx describing how this accomplished
.
5.5.13.2
Extending the Alarm model
The OPC UA Alarm models described by this specification can be extended.The following description is provided to illustrate how this extension would be accomplished.
If a particular alarm model requires the following level alarm indicators HighInstrument, HighHigh, High, low LowLow and LowInstrument, information model for it would require extending the existing alarm model. This would be accomplished by defiing a new multistateactivestatemachine type
5.5.13.3 AlarmLimitType

This variable type is a subtype of BaseDataVariableType.. This subtype is used to indicate a variable from which a corresponding alarm limit value can be obtained. The browse names of the variable shall match the state names of the alarm state to which the limit is applied. The AlarmLimitType is defined in XXXXX

 Table 94 – AnalogItemType Definition
	Attribute
	Value

	BrowseName
	AlarmLimitType

	IsAbstract
	False

	ValueRank
	-2 (-2 = ‘Any’)

	DataType
	Number

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Inherit the Properties of the BaseDataVariableType defined in Part 5

	HasProperty
	Variable
	EURange
	Range
	PropertyType
	Mandatory

	HasProperty
	Variable
	EngineeringUnits
	EUInformation
	PropertyType
	Optional

	
	
	
	
	
	

5.5.14 Level Alarm

5.5.14.1 LevelAlarmType
Level Alarms are a specialization of Process Alarms intended to represent Alarms related to a value exceeding a level limit. It is formally defined in Table 95..
Table 95 – LevelAlarmType Definition
	Attribute
	Value

	BrowseName
	LevelAlarmType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	Modelling
Rule

	Subtype of the ProcessConditionType defined in clause 5.5.11,

	HasSubtype
	ObjectType
	SingleLevelAlarmType
	Defined in Clause 5.5.14.2

	HasSubtype
	ObjectType
	MultiLevelAlarmType
	Defined in Clause xxxxxxx

	
	
	
	

5.5.14.2 Single Level

5.5.14.2.1 SingleLevelAlarmType

The SingleLevelAlarmType is a specialization of LevelAlarmType intended to represent level Alarms that represent a single limit. For example object where to have two alarm indicators say “High” and “HighHigh” both indicating a separate level Alarms and can both be active at the same time then two SingleLevelAlarmType Conditions can be used. The SingleLevelAlarmType is illustrated in XXXXX.

[image: image35.emf]State

ProcessAlarm

Type

LevelAlarm

Type

AlarmActiveState

MachineType

Active:

StateType

AcknowledgeableCondition

StateMachineType

Alarm

Active

HasSubStateMachine

ConditionState

MachineType

StateMachineType

AlarmState

MachineType

Enabled:

StateType

SingleLevel

AlarmType

MultipleLevel

AlarmType

AlarmCondition

Type

Figure 34 - Single Level Alarm type

The SingleLevelAlarm type does not define its own state machine or sub-state machine, it just uses the standard AlarmStateMachine and its AlarmActiveStateMachine. These state machines were inherited from the AlarmConditionType. It is formally defined in Table 96.
Table 96 – SingleLevelAlarmType Definition

	Attribute
	Value

	BrowseName
	LevelAlarmType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	Modelling
Rule

	Subtype of the LevelAlarmType defined in clause 5.5.13

	
	
	
	
	
	

	HasComponent
	Object
	Limit
	
	AlarmLimitType
	Optional

	
	
	
	
	
	

When an instance of the SingleLevelAlarm type is added to a custom Object type, it would usually be added as part of a LevelGroup. This standardized name for a ConditionGrouping Object, allow Client to easily discover all Alarms that are associated with levels. See section XXXX for an illustration of an instance that has SingleLevelAlarmTypes that are grouped into a LevelGroup.
5.5.14.2.2 LevelGroup

The LevelGroup Variable is just a ConditionGrouping Variable (a sub-type of folder Object). When an instance of this Variable type is defined as part of another Object, it is used to group all level Alarms. The number of single level Alarms added to the folder can vary according to the parent Object’s needs. For example an Object that is created to represent a Tank could define a LevelGroup Variable and then group in the resulting folder four Single level Alarms, with the following browse names; HighHigh, High, Low, LowLow. A different model, may only define the High and HighHigh single level Alarms in the LevelGroup. For a more detailed example see XXXXXX.
Table 97 – LevelGroup Folder Definition

	Attribute
	Value

	BrowseName
	LevelGroup

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	Modelling
Rule

	Inherits the Properties of the ConditionGrouping defined XXXXX

	
	
	
	
	
	

	
	
	
	
	
	

The LevelGroup Variable provides a place to list the Alarm types that are to be considered as part of the same group of Alarms. This instance is of type ConditionGrouping.
5.5.14.3 Multiple Level

5.5.14.3.1 MultiLevelAlarmType

The MultiLevelAlarmType is a specialization of LevelAlarmType intended to represent level Alarms with multiple limits. For example if the High and the HighHigh level Alarms are mutually exclusive, then a single MultiLevelAlarmType can be used to describe them. The MultiLevelAlarmStateMachine type is illustrated in Figure 35.

[image: image36.emf]State

ProcessAlarm

Type

LevelAlarm

Type

AlarmActiveState

MachineType

Active:

StateType

AcknowledgeableCondition

StateMachineType

Enabled:

StateType

ActiveSub

State

HasSubStateMachine

ConditionState

MachineType

StateMachineType

AlarmState

MachineType

Enabled:

StateType

Enabled:

StateType

SingleLevel

AlarmType

MultipleLevel

AlarmType

MultiActive

StateMachineType

MultilevelAlarmActive

StateMachineType

Active:

StateType

HasSubstate

Level

State

ActiveSub

State

HasSubStateMachine

Enabled:

StateType

MultiLevelAlarm

StateMachineType

Figure 35 - MultipleLevelAlarm State Machine

 MultiLevelAlarmType is formally defined in Table 98.
Table 98 – MultiLevelAlarmType Definition

	Attribute
	Value

	BrowseName
	MultiLevelAlarmType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	Modelling
Rule

	Inherits the Properties of the LevelAlarmType defined in clause 5.5.13, i.e. it has HasProperty References to the same Nodes

	HasComponent
	Object
	State
	
	MultiLevelAlarmStateMachineType
	Mandatory

	HasComponent
	Object
	HighHighLimit
	
	AlarmLimitType

	Optional

	HasComponent
	Object
	HighLimit
	
	AlarmLimitType
	Optional

	HasComponent
	Object
	LowLimit
	
	AlarmLimitType
	Optional

	HasComponent
	Object
	LowLowLimit
	
	AlarmLimitType
	Optional

The MultiLevelAlarmType redefines the State Object to be of MultiLevelAlarmStateMachineType which is a sub type of the original AlarmStateMachineType.

The MultiLevelAlarmType defines four optional Alarm limits. These Alarm limits are used to disclose the limit that is exceeded when the Alarm is generated. These limits are of type AlarmLimitType, which allows an engineering unit to be associated with the limit. They shall be set for any Alarm levels that are exposed by the MultiActiveStateMachineType.
5.5.14.3.2 MultiLevelAlarmStateMachineType

The MultiLevelAlarmStateMachineType, which is a subtype the AlarmStateMachineType, redefines the state machine used by the ActiveSubState to be of MultiLevelAlarmActiveStateMachineType.. MultiLevelAlarmStateMachineType is formally defined in Table 99.

Table 99 – MultiLevelAlarmStateMachineType Definition

	Attribute
	Value

	BrowseName
	MultiLevelAlarmStateMachineType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the AlarmStateMachineType

	HasComponent
	Object
	ActiveSubState
	
	MultiLevelAlarmActiveStateMachineType
	Mandatory

5.5.14.3.3 MultiLevelAlarmActiveStateMachineType

The MultiLevelAlarmActiveStateMachineType defines the state machine used by the MultiLevelAlarmType by extending the AlarmActiveStateMachineType. It is formally defined in Table 100.

Table 100 – MultiLevelAlarmActiveStateMachineType Definition

	Attribute
	Value

	BrowseName
	MultiLevelAlarmStateMachineType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the AlarmStateMachineType

	HasComponent
	Object
	Level
	
	MulitActiveStateMachineType
	Mandatory

5.5.14.3.4

	
	

	
	

	
	

	
	
	
	
	
	

	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	

	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

5.5.15 DeviationAlarm

5.5.15.1 DeviationAlarmType
Deviation Alarms are a specialization of Process Alarms intended to represent Alarms related to a deviation from a setpoint. It is formally defined in table Table 101.
Table 101 – DeviationAlarmType Definition
	Attribute
	Value

	BrowseName
	DeviationAlarmType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	Modelling
Rule

	Subtype of the ProcessConditionType defined in clause 5.5.11,

	HasSubtype
	ObjectType
	SingleDeviationAlarmType
	Defined in Clause XXXXX

	HasSubtype
	ObjectType
	MultiDeviationAlarmType
	Defined in Clause XXXXX

5.5.15.2 Single Deviation

5.5.15.2.1 SingleDeviationAlarmType

The SingleDeviationAlarmType is a specialization of DeviationAlarmType intended to represent deviation Alarms that represent a single limit. For example if the High and the HighHigh deviation Alarms can both be active at the same time two SingleDeviationAlarmType Conditions can be used. It is illustrated in Figure 36.

[image: image37.emf]State

ProcessAlarm

Type

DeviationAlarm

Type

AlarmActiveState

MachineType

Active:

StateType

AcknowledgeableCondition

StateMachineType

Alarm

Active

HasSubStateMachine

ConditionState

MachineType

StateMachineType

AlarmState

MachineType

Enabled:

StateType

SingleDeviation

AlarmType

MultipleDeviation

AlarmType

Figure 36 - Single Deviation Alarm Type
The SingleDeviationAlarm type does not define its own state machine or sub-state machine, it just uses the standard AlarmStateMachine and its AlarmActiveStateMachine. These state machines were inherited from the AlarmConditionType.It is formally defined in Table Table 102.
Table 102 – SingleDeviationAlarmType Definition
	Attribute
	Value

	BrowseName
	SingleDeviationAlarmType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	Modelling
Rule

	Subtype of the DeviationAlarmType defined in clause 5.5.15

	HasComponent
	Object
	Limit
	
	AlarmLimitType
	Optional

	
	
	
	
	
	

When an instance of the SingleDeviationAlarm type is added to a custom Object type, it would usually be added as part of a DeviationGroup. This standardized name for a ConditionGrouping Object, allow Client to easily discover all Alarms that are associated with levels. The DeviationGroup is defined in section 5.5.15.2.2
5.5.15.2.2 DeviationGroup

The DeviationGroup Variable is just a ConditionGrouping Variable (a sub-type of folder Object). When an instance of this Variable type is defined as part of another Object, it is used to group all Deviation Alarms. The number of single Deviation Alarms added to the folder can vary according to the parent Object’s needs. For example an Object that is created to represent a Pump could define a DeviationGroup Variable and then group in the resulting folder four Single Deviation Alarms, with the following browse names; HighHigh, High, Low, LowLow. A different model, may only define the High and HighHigh single Deviation Alarms in the DeviationGroup. For a more detailed example see clause XXXXXX

Table 103 – DeviationGroup Folder Definition

	Attribute
	Value

	BrowseName
	DeviationGroup

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	Modelling
Rule

	Inherits the Properties of the ConditionGrouping defined XXXXX

	
	
	
	
	
	

	
	
	
	
	
	

The DeviationGroup Variable is sub type of ConditionGrouping type.
5.5.15.3 Multiple Deviation

5.5.15.3.1 MultiDeviationAlarmType

The MultiDeviationAlarmType is a specialization of DeviationAlarmType intended to represent deviation Alarms with multiple limits. For example if the High and the HighHigh deviation Alarms are mutually exclusive, then a single MultiDeviationAlarmType can be used to describe them. The MultiDeviationAlarmStateMachine type is illustrated in Figure 37.

[image: image38.emf]State

ProcessAlarm

Type

DeviationAlarm

Type

AlarmActiveState

MachineType

Active:

StateType

AcknowledgeableCondition

StateMachineType

Enabled:

StateType

ActiveSub

State

HasSubStateMachine

ConditionState

MachineType

StateMachineType

AlarmState

MachineType

Enabled:

StateType

Enabled:

StateType

SingleDeviation

AlarmType

MultipleDeviation

AlarmType

MultiActive

StateMachineType

MultiDeviationAlarm

ActiveStateMachineType

Active:

StateType

HasSubstate

Level

State

ActiveSub

State

HasSubStateMachine

Enabled:

StateType

MultiDeviationAlarm

StateMachineType

Figure 37 - MultipleDeviationAlarm State Machine
 MultiDeviationAlarmType is formally defined in XXXX.
Table 104 – MultiDeviationAlarmType Definition
	Attribute
	Value

	BrowseName
	MultiDeviationAlarmType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	Modelling
Rule

	Inherits the Properties of the DeviationAlarmType defined in clause 5.5.15, i.e. it has HasProperty References to the same Nodes

	HasComponent
	Object
	State
	
	MultiDeviationAlarmStateMachineType
	New

	HasComponent
	Object
	HighHighLimit
	
	AlarmLimitType
	Optional

	HasComponent
	Object
	HighLimit
	
	AlarmLimitType
	Optional

	HasComponent
	Object
	LowLimit
	
	AlarmLimitType
	Optional\

	HasComponent
	Object
	LowLowLimit
	
	AlarmLimitType
	Optional

The MultiDeviationAlarmType redefines the State Object to be of MultiDeviationAlarmStateMachineType which is a sub type of the original AlarmStateMachineType.

The MultiDeviationAlarmType defines four optional Alarm limits. These Alarm limits are used to disclose the limit that is exceeded when the Alarm is generated. These limits are of type AlarmLimitType, which allows an engineering unit to be associated with the limit. They shall be set for any Alarm levels that are exposed by the MultiDeviationAlarmActiveSubStateStateMachine

5.5.15.3.2 MultiDeviationAlarmStateMachineType

The MultiDeviationAlarmStateMachineType, which is a subtype the AlarmStateMachineType, redefines the state machine used by the ActiveSubState to be of MultiDeviationAlarmType. MultiDeviationAlarmStateMachineType is formally defined in Table 99.

Table 105 – MultiDeviationAlarmStateMachineType Definition

	Attribute
	Value

	BrowseName
	MultiDeviationAlarmStateMachineType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the AlarmStateMachineType

	HasComponent
	Object
	ActiveSubState
	
	MultiDeviationAlarmActiveSubState
	Mandatory

5.5.15.3.3 MultiDeviationAlarmActiveSubStateMachineType

The MultiDeviationAlarmActiveStateMachineType defines the state machine used by the MultiDeviationAlarmType by extending the AlarmActiveStateMachineType. It is formally defined in Table 106.
Table 106 – MultiDeviationAlarmActiveStateMachineType Definition

	Attribute
	Value

	BrowseName
	MultiLevelAlarmStateMachineType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the AlarmStateMachineType

	
	
	
	
	
	

5.5.16 Rate Of Change

5.5.16.1 RateOfChangeAlarmType

Rate of change Alarms are a specialization of Process Alarms intended to represent Alarms related to an excessive rate of change Condition.

Table 107 – RateOfChangeAlarmType Definition
	Attribute
	Value

	BrowseName
	RateOfChangeAlarmType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	Modelling
Rule

	Subtype of the ProcessConditionType defined in clause 5.5.11

	HasSubtype
	ObjectType
	SingleRateofChangeAlarmType
	Defined in Clause 5.5.16.3

	HasSubtype
	ObjectType
	MultipleRateofChangeAlarmType
	Defined in Clause 5.5.16.4.1

5.5.16.2 Single Rate of Change

5.5.16.3 SingleRateofChangeAlarmType

The SingleRateOfChangeAlarmType is a specialization of RateOfChangeAlarmType intended to represent rate Alarms that represent a single limit. For example if the high and the highhigh rate Alarms can both be active at the same time two SingleRateOfChangeAlarmType Conditions can be used. It is illustrated in Figure 38.

[image: image39.emf]State

ProcessAlarm

Type

RateOfChange

AlarmType

AlarmActiveState

MachineType

Active:

StateType

AcknowledgeableCondition

StateMachineType

Alarm

Active

HasSubStateMachine

ConditionState

MachineType

StateMachineType

AlarmState

MachineType

Enabled:

StateType

SingleRateOfChange

AlarmType

MultipleRateOfChange

AlarmType

AlarmCondition

Type

Figure 38 - Single Rate Of Change Alarm type

The SingleRateOfChangeAlarm type does not define its own state machine or sub-state machine, it just uses the standard AlarmStateMachine and its AlarmActiveStateMachine. These state machines were inherited from the AlarmConditionType. It is formally defined in Table 108
Table 108 – SingleRateOfChangeAlarmType Definition
	Attribute
	Value

	BrowseName
	SingleRateOfChangeAlarmType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	Modelling
Rule

	Subtype of the RateAlarmType defined in clause XXXX

	HasComponent
	Object
	Limit
	
	AlarmLimitType
	Optional

When an instance of the SingleRateOfChangeAlarm type is added to a custom Object type, it would usually be added as part of a RateOfChangeGroup. This standardized name for a ConditionGrouping Object, allow Client to easily discover all Alarms that are associated with RateOfChanges. It is defined in section 5.5.16.3.1.
5.5.16.3.1 RateOfChangeGroup

The RateOfChangeGroup Variable is just a ConditionGrouping Variable (a sub-type of folder Object). When an instance of this Variable type is defined as part of another Object, it is used to group all rate of change Alarms. The number of single rate of change Alarms added to the folder can vary according to the parent Object’s needs. For example an Object that is created to represent a Tank could define a RateOfChangeGroup Variable and then group in the resulting folder four Single Rate Of Change Alarms, with the following browse names; HighHigh, High, Low, LowLow. A different model, may only define the High and HighHigh single rate of change Alarms in the RateOfChangeGroup. For a more detailed example see XXXXXX

Table 109 – RateOfChangeGroup Folder Definition

	Attribute
	Value

	BrowseName
	RateOfChangeGroup

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	Modelling
Rule

	Subtype of the ConditionGrouping defined 5.2.9

	
	
	
	
	
	

	
	
	
	
	
	

The LevelGroup Variable provides a place to list the Alarm types that are to be considered as part of the same group of Alarms. This instance is of type ConditionGrouping.

5.5.16.4 Multiple Rate Of Change

5.5.16.4.1 MultipleRateOfChangeAlarmType

The MultiRateOfChangeAlarmType is a specialization of RateOfChangeAlarmType intended to represent Rate Of Change Alarms with multiple limits. For example if the High and the HighHigh Rate Of Change Alarms are mutually exclusive, then a single MultiRateOfChangeAlarmType can be used to describe them. The MultiRateOfChangeAlarmStateMachine type is illustrated in Figure 39.

[image: image40.emf]State

ProcessAlarm

Type

LevelAlarm

Type

AlarmActiveState

MachineType

Active:

StateType

AcknowledgeableCondition

StateMachineType

Enabled:

StateType

ActiveSub

State

HasSubStateMachine

ConditionState

MachineType

StateMachineType

AlarmState

MachineType

Enabled:

StateType

Enabled:

StateType

SingleLevel

AlarmType

MultipleLevel

AlarmType

MultiActive

StateMachineType

MultilevelAlarmActive

StateMachineType

Active:

StateType

HasSubstate

Level

State

ActiveSub

State

HasSubStateMachine

Enabled:

StateType

MultiLevelAlarm

StateMachineType

Figure 39 - MultipleRateOfChangeAlarm State Machine

 MultiRateOfChangeAlarmType is formally defined in Table 110.

Table 110 – MultiRateOfChangeAlarmType Definition

	Attribute
	Value

	BrowseName
	MultiRateOfChangeAlarmType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the the RateOfChangeAlarmType defined in clause 5.5.13.

	HasComponent
	Object
	State
	
	MultiRateOfChangeAlarmStateMachineType
	Mandatory

	HasComponent
	Object
	HighHighLimit
	
	AlarmLimitType
	Optional

	HasComponent
	Object
	HighLimit
	
	AlarmLimitType
	Optional

	HasComponent
	Object
	LowLimit
	
	AlarmLimitType
	Optional

	HasComponent
	Object
	LowLowLimit
	
	AlarmLimitType
	Optional

The MultiRateOfChangeAlarmType redefines the State Object to be of MultiRateOfChangeAlarmStateMachineType which is a sub type of the original AlarmStateMachineType.

The MultiRateOfChangeAlarmType defines four optional Alarm limits. These Alarm limits are used to disclose the limit that is exceeded when the Alarm is generated. These limits are of type AlarmLimitType which is a sub type of AnalogItemType, which allow an engineering unit to be associated with the limit. They shall be set for any Alarm levels that are exposed by the MultiRateOfChangeAlarmActiveSubStateStateMachine

5.5.16.4.2 MultiRateOfChangeAlarmStateMachineType

The MultiRateOfChangeAlarmStateMachineType, which is a subtype of the AlarmStateMachineType, redefines the state machine used by the ActiveSubState to be of MultiRateOfChangeAlarmType.. MultiRateOfChangeAlarmStateMachineType is formally defined in Table 111.

Table 111 – MultiRateOfChangeAlarmStateMachineType Definition

	Attribute
	Value

	BrowseName
	MultiRateOfChangeAlarmStateMachineType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the AlarmStateMachineType

	HasComponent
	Object
	ActiveSubState
	
	MultiRateOfChangeAlarmActiveSubState
	Mandatory

5.5.16.4.3 MultiRateOfChangeAlarmActiveSubStateMachineType

The MultiRateOfChangeAlarmActiveStateMachineType defines the state machine used by the MultiRateOfChangeAlarmType by extending the AlarmActiveStateMachineType. It is formally defined in Table 112.
Table 112 – MultiRateOfChangeAlarmActiveStateMachineType Definition

	Attribute
	Value

	BrowseName
	MultiRateOfChangeAlarmStateMachineType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the AlarmStateMachineType

	
	
	
	
	
	

5.5.17 Digital Alarms

5.5.17.1 DigitalAlarmType

The DigitalAlarmType is an abstract type used to classify various Condition types into a group representing digital Conditions related to the process itself. It is formally defined in Table 113. The AlarmStateMachine is inherited from the AlarmConditionType, no additional sub state machines are defined.

[image: image41.emf]AlarmCondition

Type

Condition

Type

Acknowledgeable

ConditionType

ProcessAlarm

Type

OffNormal

AlarmType

DigitalAlarmType

ChangeOfState

AlarmType

TripAlarmType

Figure 40 - Digital Alarm Type

Table 113 – DigitalAlarmType Definition

	Attribute
	Value

	BrowseName
	DigitalAlarmType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	Modelling
Rule

	Subtype of the ProcessAlarmType defined in clause 5.5.12.

	HasSubtype
	ObjectType
	ChangeOfStateAlarmType
	Defined in Clause 5.5.13

	HasSubtype
	ObjectType
	OffNormalAlarmType
	Defined in Clause 5.5.15

5.5.17.2 OffNormalAlarmType
The OffNormalAlarmType is a specialization of the DigitalAlarmType intended to represent a digital Condition that is considered to be not normal. It is formally defined in Table 114. This DigitalAlarmType sub type is usually used to indicate that a digital value is in an Alarm state, it is active as long as the non-normal value is present.
Table 114 – OffNormalAlarmType Definition

	Attribute
	Value

	BrowseName
	OffNormalAlarmType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	Modelling
Rule

	Subtype of the DigitalAlarmType defined in clause 5.5.17.1

	HasSubtype
	ObjectType
	TripAlarmType
	Defined in Clause 5.5.17.3

5.5.17.3 TripAlarmType

The TripAlarmType is a specialization of the OffNormalAlarmType intended to represent an equipment trip Condition. It is formally defined in Table 115. This sub type of OffNormalAlarmtype is used only for categorization.
Table 115 – TripAlarmType Definition

	Attribute
	Value

	BrowseName
	TriplAlarmType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	Modelling
Rule

	Subtype of the OffNormalAlarmType defined in clause 5.5.17.2.

	
	
	
	

5.5.17.4 ChangeofStateType

The ChangeOfStateType is a specialization of the DigitalAlarmType intended to indication the change of state of some process Condition. It is formally defined in Table 116. Any change in state of a Variable associated with the Condition will cause the Condition to become active. The Acknowledge and optionally the confirm actions are used to Reset the active state. It is up to the Server or underlying system to provide the appropriate logic.

Table 116 – ChangeOfStateType Definition

	Attribute
	Value

	BrowseName
	TriplAlarmType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	Modelling
Rule

	Subtype of the DigitalAlarmType defined in clause 5.5.17.1

	
	
	
	

5.6 Additional Types used for Categorization

5.6.1.1 MaintenanceAlarmType

The MaintenanceAlarmType is an abstract type used to classify various Condition types into a group representing Conditions related to maintenance. It is formally defined in Table 117. No further definition of maintenance Alarms is provided here. It is expected that other standards groups will extend this abstract type to further define maintenance type Conditions.

Table 117 – MaintenanceAlarmType Definition
	Attribute
	Value

	BrowseName
	MaintenaceAlarmType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the AlarmConditionType defined in clause 5.5.2

	
	
	
	

5.6.1.2 SystemAlarmType

The SystemAlarmType is an abstract type used to classify various Condition types into a group representing Conditions related to the System. It is formally defined in Table 118. System Alarms do not originate from the process itself but rather represent Conditions occurring with the system controlling or monitoring system process. No further definition of system alarms is provided here. It is expected that other standards groups or vendors will extend this abstract type to further define system type Conditions.

Table 118 – SystemAlarmType Definition

	Attribute
	Value

	BrowseName
	SystemAlarmType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the AlarmConditionType defined in clause 5.5.2

	
	
	
	

6 Alarm specific uses of Services

6.1 Overview

Part 4 specifies all Services needed for processing Alarms and Conditions. In particular:

· The View Service set to detect Conditions, and their Properties.

· The Attribute Service set to read or write Attributes and in particular the value Attribute of Conditions instantiated in the UA address space.

· The MonitoredItem and Subscription Service set to set up monitoring of Conditions and to receive Event Notifications.

6.2 Historical Access
Historical Event data can be accessed from any Node that has the EventNotifier Attribute with the HistoryRead or HistoryWrite bit set (see Part 3 for details). The accessing of the Historical Events is accomplished via the standard ReadHistory and UpdateHistory Services defined in Part 4. The details corresponding to access of historical Event data is further described in Part 11.
6.3 Data Subscriptions

Condition types can be instantiated in the UA AddressSpace. These instances can be used by the Subscription and MonitoredItem Services like any other Variable or Property in the AddressSpace.

6.4 Event Subscriptions

Event Subscription are part of the base UA and as such are covered by Part 4. In particular to obtain Event information via a Subscription the user needs to create an EventFilter, again see Part 4 for a description.
6.5 Common DataTypes for Method Calls

6.5.1 StatusResponseDataType

This structure contains elements that describe the status. Its composition is defined in Table 119.

Table 119 – StatusResponseDataType Structure

	Name
	Type
	Description

	
StatusResponse
	Structure
	

	

Status
	StatusCode
	The Status

	

Diagnostic
	String
	Description of the status

Its representation in the AddressSpace is defined in Table 120.

Table 120 – StatusResponseDataType Definition

	Attributes
	Value

	BrowseName
	StatusResponseDataType

7 Appendix - A - Audit Events
The following figure provides an over view of the Audi events defined in this specification and there relationship to each other
.

[image: image42.emf]Defined in [Part 11]

Defined in [UA Part 5]

AuditEventType

AuditNodeManagement

EventType

AuditUpdate

EventType

AuditAddNodes

EventType

AuditSecurity

EventType

AuditSession

EventType

AuditChannel

EventType

AuditAddReferences

EventType

AuditDeleteNodes

EventType

AuditOpenSecure

ChannelEventType

AuditCloseSecure

ChannelEventType

AuditDelete

ReferencesEventType

AuditActivateSession

EventType

AuditCreateSession

EventType

AuditUpdateMethod

EventType

AuditHistory

UpdateEventType

AuditHistoryValue

UpdateEventType

AuditWrite

UpdateEventType

AuditHistoryEvent

UpdateEventType

AuditHistory

DeleteEventType

AuditUpdate

StateEventType

AuditCancel

EventType

AuditHistoryAtTime

DeleteEventType

AuditHistoryEvent

DeleteEventType

AuditHistoryRawModify

DeleteEventType

AuditCertificate

EventType

AuditCertificate

EventType

AuditCertificate

EventType

AuditCertificate

EventType

AuditCertificate

EventType

AuditCertificate

EventType

AuditCertificate

EventType

AuditCondition

EventType

AuditShelved

EventTYpe

AuditAcknowledge

EventType

AuditEnable

EventType

AuditAcknowledge

InstanceEventType

AuditAcknowledgeBy

EventIdEventType

AuditConfirm

EventType

AuditComment

EventType

AuditCommentBy

EventIdEventType

AuditComment

InstanceEventType

AuditConfirmBy

EventIdEventType

AuditConfirm

InstanceEventTYpe

AuditCondition - add these in the same manner as for the general Condition type
 The SourceNode identifies the

\ were updated)
7.1 Appendix - B -Condition Model
 Example

7.1.1 General

This section provides
an example of how the instance model for the standard Condition Model could be exposed. This is just an example using the standard Condition Model; some Servers may extend the Condition Model and as a result expose a different Instance Model. They may also choose to implement the Instance Model differently. Clients should not expect a Server to expose any specific instance Model.
To allow a better illustration of Conditions and Alarms, the following examples make use of a real world plant situation. This plant and its operation is fictitious, but is described here to allow for better understanding of the overall system. The plant is a simple large power plant. In a real power plant multiple Operators are assigned to monitor separate portions of the plant. The plant may contain controls for burner operation, feed water control, turbine controls and many additional systems. Figure XXXX illustrates the complexity of a power plant
[image: image43.jpg]AE : AE_FEEDWATER =10 x|
O @ [recowateR 1% 55

AE-FEEDWATER

GROSSMW | NETMW | THROTTLE | OPACITY | EXCESSO02 | DRUMLVL | SUPERHEAT| REWEAT | OUTSIDEAIR | FUELFLOW

| xooc VRN oo [TV >oo< [N 0o | Bl Bl BElr | Bl | B | EEScsn
= g CNDS HEADER DRUM LYL atanp 5007501 20% open | (5 (I EEEEE -
§rowwas hoS cnDs [SEAL T

ey LP TuRe STEAM 2 TREND
" R
s| RECIRCS

LOCAL
==

LP SEAL WTR

REI:IRI:HP SEAL WTR
[STh ==
= =
cnDsR D D
= I\
P 2 *—m.’su sPRAY.
s e L =
STUFFING = E&ﬁ
BOX RTRN m m
W wareni ey | [L ES
RECIAC — RECIRC

SPEED

BFBP MIN FLOW: LP SEAL WTR

<3
2000 GPM 048 17 L—pqusprar
AU AUX [AUX TURB [AUX TURB [AUX TURB AUX TURE |AUX TURE |AUX TURB
TURBS | TURBS | 3ATRIP/ | 3ALUBE | 3AVIB/ | 38 TRIP/ | 3B LUBE | 3BVIB/ |PREV| UP |NEXT| CLEAR MENU BFP MIN FLOW.
OVERVIEW| STEAM | “RESET ol TEMP_| RESET ol TEMP 733 KLBH

Figure 41 - Power Plant Overview
If we limit the example to a one small part of the power plant, the feed water tank area, it reduces complexity some what, but this area is still fairly complex. See Figure XXX for an illustration of it. The figure does not include all of the instrumentation or other complexities associated with all of the pieces of equipement.
[image: image44.jpg]CNDS I(

VENT

3P1903

BLWDN
FLASH TNK

1900

190

1902

Aux
STH

FRONT STEAM DRUM

FRONT LWR RING HDR

DRN &
ACID WASH

[2600.00
PSIG

Figure 42 - Feed Water Area Overview
To further limit the example, the example will only deal with the feedwater tank (illustrated in Figure XXX) and the Client (also know as Operator station) that would be monitoring this part of the plant. It is not necessary to understand the operation of this plant only to accept some of the statements about it. The plant does contain an automated system for rapid start-up of the plant. This automated system can be initiated by a supervisor, but requires all Operators to agree.

[image: image45.jpg]3

Feedwater

feedwater pressure
varies (a disturbance)

setpoint

estimated feedwater demand
based on current steam flow

bailer liquid

Toed forward element

Steam

stearn demand varies
(a disturbance)
—

steamn

FT = flow transmitter
FC = flaw cantroller
LC = level controller
FD = flow difference
LY = summing relay

Boiler Drum

Figure 43 - Feed Water Tank and Process
The feed water tank area in this example includes a Tank with two controllers (FC & LC), an inlet pipe (Feedwater) with a flow meter and valve (FT), several sensors (not pictured) and a pump (not pictured). In a real world plant this area would include additional flow meters, pipes, valves, pumps and other hardware, but for simplicity sakes this is omitted from this example.
The example will include describing the Information Model that is used in the plant, the Subscriptions and interaction that a Client may make with the Server and the streams of events the Clients would receive on these Subscriptions. The example will start with a simple example and will expand on the simple starting point to encompass the entire example.

The example is broken up into three major sections the first section provides an illustration of the Type model that the instance model will be implemented against. This type model is primarily just an aggregation of figures already presented in this document, but it does include some custom types. The second section provides an illustration of the instance model that deals with Conditions. The third example provides an illustration of a Condition model that includes Alarms. As in all illustrations, not all References that could and would exist for a given instance are included, only the References that are required to illustrate the instance model are included.

7.1.2 Example - Type Model

7.1.2.1 Introduction

The example type model is fully illustrated in XXXXXX including listing the standard types that are used in the following samples and the custom types that are defined in the UA Address space for these examples. The standard types are not described further here. The custom types are defined in this section.
The first items that are the custom types that represent Controllers (temperature, level), These are logical devices that perform some functionality. This is followed by the creation of a Sensor type, which is further sub-typed in to three specific sensor types. The sensors provide input to the system. Lastly three aggregate type are create (Pipe, Pump and Tank). These three types are used to model real world devices and they also include References to other type that are used to model these complex types. The MyTypesFolder is also a created construct to help organize the type definitions; it is nothing more then a folder.
7.1.2.2 Controllers

7.1.2.2.1 Introduction

Two controller types are created for this example. These controls are illustrated in Figure XXXX.

[image: image46.emf]LevelControlTag

 Type

TemperatureControl

TagType

Type Model

MyTypes Folder

Figure 41 - Controllers

7.1.2.2.2 Temperature Controller

This is a custom Object type that models a temperature controller. It is described in detail in Table XXXX.

Table 125 – TemperatureControllerTagType Definition
	Attribute
	Value

	BrowseName
	TemperatureControllerTagType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the ObjectType defined in Part 5

	
	
	
	

	HasProperty
	Variable
	Setpoint
	
	AnalogItemType
	Mandatory

	HasProperty
	Variable
	ControlOut
	
	AnalogItemType
	Mandatory

	HasProperty
	Variable
	ProcessVariable
	
	AnalogItemType
	Mandatory

	HasProperty
	Variable
	Mode
	
	MultiStateDiscreteType
	Mandatory

	HasComponent
	Method
	
	
	
	

	
	
	
	
	
	

7.1.2.2.3 Level Controller

This is a custom Object type that models a level controller. It is described in detail in XXXXXX
Table 126 – LevelControllerTagType Definition
	Attribute
	Value

	BrowseName
	LevelControllerTagType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the ObjectType defined in Part 5

	
	
	
	

	HasProperty
	Variable
	Setpoint
	
	AnalogItemType
	Mandatory

	HasProperty
	Variable
	ControlOut
	
	AnalogItemType
	Mandatory

	HasProperty
	Variable
	ProcessVariable
	
	AnalogItemType
	Mandatory

	HasProperty
	Variable
	Mode
	
	PropertyType
	Mandatory

	HasComponent
	
	
	
	
	

7.1.2.3 Sensors

7.1.2.3.1 Introduction
The define sensor types are illustrated in Figure XXXXX.

[image: image47.emf]Type Model

MyTypes Folder

SensorType

FlowSensorType

LevelSensorType

TemperatureSensor

Type

7.1.2.3.2 SensorType
This is a custom Object type that models a generic instrument package. It is described in detail in table ZZZZZ

Table 121 – SensorType Definition

	Attribute
	Value

	BrowseName
	FlowTransmitterType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the ObjectType defined in Part 5

	
	
	
	

	HasProperty
	Variable
	
	
	
	

	HasComponent
	
	
	
	
	

7.1.2.3.3 FlowTransmitterType
This is a custom Object type that models an instructment that measures the flow thru a section of pipe. It is described in detail in table ZZZZZ

Table 122 – FlowTransmitterType Definition
	Attribute
	Value

	BrowseName
	FlowTransmitterType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the SensorType

	
	
	
	

	HasProperty
	Variable
	FlowRate
	
	AnalogItemType
	

	HasComponent
	
	
	
	
	

7.1.2.3.4 TemperatureSensorType
This is a custom Object type that models an instrument that temperature. It is described in detail in table ZZZZZ

Table 123 – TemperatureType Definition
	Attribute
	Value

	BrowseName
	TemperatureSensorType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the SensorType

	
	
	
	

	HasProperty
	Variable
	Temperature
	
	AnalogItemType
	

	HasComponent
	
	
	
	
	

7.1.2.3.5 LevelSensorType
This is a custom Object type that models an instrument that measures the level in a tank. It is described in detail in table ZZZZZ

Table 124 – LevelSensorType Definition
	Attribute
	Value

	BrowseName
	LevelSensorType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the SensorType

	
	
	
	

	HasProperty
	Variable
	Depth
	
	AnalogItemType
	

	HasComponent
	
	
	
	
	

7.1.2.4 Physicals Devices

7.1.2.4.1 Introduction

[image: image48.emf]TankType

Type Model

MyTypes Folder

PumpType

PipeType

7.1.2.4.2 PipeType

This is a custom Object type that models a section of pipe. It is described in detail in table ZZZZZ

Table 127 – PipeType Definition
	Attribute
	Value

	BrowseName
	PipeType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the ObjectType defined in Part 5

	
	
	
	

	HasProperty
	Variable
	
	
	
	

	HasComponent
	
	
	
	
	

[Note: this type has nothing but collection point for items below it]

7.1.2.4.3 PumpType

This is a custom Object type that models a pump. It is described in detail in table ZZZZZ

Table 128 – PumpType Definition
	Attribute
	Value

	BrowseName
	PumpType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the ObjectTypeObjectType defined in Part 5

	
	
	
	

	HasProperty
	Variable
	
	
	
	

	HasComponent
	
	
	
	
	

7.1.2.4.4 TankType

This is a custom type that includes References to several addition Variables, including additional custom types. It is described in more detail in table ZZZZZ

Table 129 – TankType Definition
	Attribute
	Value

	BrowseName
	TankType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the ObjectType defined in Part 5

	
	
	
	

	HasProperty
	Variable
	Level
	
	PropertyType
	Mandatory

	HasComponent
	Method
	RapidStart
	
	
	Mandatory

	GeneratesEvents
	
	
	
	
	

 [references, a temperature sensor, a level sensor, the level controller and the temperature controller – act as notifier for these and also for the pipe

7.1.2.5 Summary

The custom type defined for this example ate illustrated in XXXXXX

[image: image49.emf]LevelControlTag

 Type

TemperatureControl

TagType

TankType

Type Model

MyTypes Folder

PumpType

SensorType

FlowSensorType

LevelSensorType

TemperatureSensor

Type

PipeType

Figure 42 - Custom Type Summary

The entire type system used by this example is illustatred in XXXXXX. This include many of the types defined in this document.

[image: image50.emf]Standard UA Types

BaseEvent

Type

Condition

Type

Acknowledgeable

Condition Type

RefreshStrart

Event Type

SystemEvent

Type

RefreshRequired

Event Type

RefreshEnd

Event Type

AlarmCondition

Type

DialogCondition

Type

StateMachine

Type

AcknowledgeStateMachineType

ConfirmedStateMachineType

ConditionStateMachineType

AlarmActiveStateMachineType

AlarmInhibitedStateMachineType

ManualInhibitStateMachineType

SystemInhibitStateMachineType

AlarmStateMachineType

AcknowledgeableConditionState

MachineType

CommentStateMachineType

StatusStateMachineType

AuditEventType

AuditUpdateState

EventType

BaseCondition

Type

ConditionEnableAudit

EventType

OKDialog

Type

OkDialogStateMachineType

OkCancelDialogStateMachine

Type

OKCancelDialog

Type

YesNoCancelDialog

Type

YesNoCancelDialogState

Machine Type

AcknowledgeAudit

EventType

ConfirmedAudit

EventType

LevelControlTag

 Type

TemperatureControl

TagType

TankType

Type Model

BaseTypes

Folder

MyTypes Folder

PumpType

SensorType

FlowSensorType

LevelSensorType

TemperatureSensor

Type

PipeType

Figure 43 - Condition Example Type Model

7.1.3 Example of Instance Condition Model

The following figures illustrate the instance address space that could exist for the type model specified in clause 7.1.2. The following should be noted about this address space: Condition instances are dynamically created and deleted; they will exist in the address space when they are required. They may also exist for some period of time after the Condition instance is no longer required. This initial figure illustrates an address space in which no Conditions exist.

[image: image51.wmf]Types

LevelControlTag

 Type

LevelControl

101

SingleLevelAlarm

Type

SetPoint

MeasuredValue

LevelAlarmGroup

AlarmStatus

Type

SingleRateOfChangeAlarm

Type

ControlOutput

TempControl

101

Tank

1

TempControlTag

Type

HasNotifier

HasNotifier

SetPoint

MeasuredValue

ControlOutput

MultiLevelAlarm

Type

TemperatureAlarm

Group

Pipe

101

Level Sensor

101

Temerature

Sensor

101

FlowSensor

101

LevelSensorType

TemperatureSensor

Type

FlowSensorType

PumpType

HasNotifier

HasNotifier

OKCancelDialog

Type

YesNoCancelDialog

Type

Pump

101

PipeType

Figure 44 - Condition Instance Address space example

This example includes the events that a Client would receive assuming it is subscribed to the Notifier associated with the Tank. This example does not include all possible events that could be received from the notifier.
Part of what this example will illustrate is what a Client would receive via its Subscription to the notifier. The Client maintains three Subscriptions to the notifier. The three Subscriptions are used to populate three separate screens/logs.

· The first Subscription is used to populate an Event display. This display is used to provide information related to the operation of the Tank to the Operator of the display. This display may be closed or Reset by the Operator
· The second Subscription is used to generate a log of all actions taken by the Operator (Audit log). This Subscription is part of a redundant Client that is always active. Synchronization between the Clients is beyond the scope of this example. The audit log subscription in many systems may be connected to the server object, instead of a specific object. The server object would be able to obtain all audit event in an entire system, for simplicity this example will use the tank object.

· The third Subscription is used by the Client to monitor for events that would require an action on the part of the Operator. The Client, on receipt, of an Event of this general type would provide an appropriate popup dialog box for the Operator.

It is worth noting that this is just one of many possible behaviours a Client could have and it in no way dictates how a Client should behave. Also the Event stream that are illustrated in the example do not include all fields that a Client may wish to display, they only include the bear minimum that is required to illustrate the interactions and events.

Figure XXXX2 illustrates part of the address space after a period of time in which some activity has occurred at the plant.

[image: image52.emf]Types

LevelControlTag

 Type

LevelControl 101

SingleLevelAlarm

Type

Rapid Start

AlarmStatus

Type

SingleRateOfChangeAlarm

Type

TempControl 101

Tank 1

TempControlTag

Type

HasNotifier

OKCancelDialog

Type

YesNoCancelDialog

Type

Pipe 101

HasNotifier

Auto

Pump 101

HasNotifier

PumpType

PipeType

Figure 45 - Condition Dialog Instance Example Address space

The following is a description of the activity:

A supervisor in the plant issued a request for a rapid startup, this request triggered an Event from the tank Object, requesting that the Operator for this part of the plant confirm that the Feed Water Tank area is ready for a rapid startup. The Operator noted that the “Pump 101” was in manual mode and needed to be switched to automatic mode. The pump had been configured to confirm changes between modes thus it generated an Event requesting confirmation.

Table XXXXX illustrate the Event stream that the Alarm display Client may receive (it contains comment line to help identify the action that occurred.

Table 130 - Dialog Example Event Stream Display Client

	Time
	Source
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Table XXXX2 illustrates the Event stream that the Audit log would have received over the same time period

Table 131 - Dialog Example Event Stream Audit Log Client

	Time
	Source
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Table XXXX3 illustrates the events that the third Client process would receive over the same time period

Table 132 - Dialog Example Event Stream Message Window Client

	Time
	Source
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

7.1.4 Example of Instance Alarm model

[Include description of examples that have Retain flag set (i.e. Condition that is in Alarm, Condition that has returned to normal but has not been acknowledged, a Condition that a Server list as in active state until it is acknowledged – work order – not really an Alarm]

In this example the same address space as used in the dialog example, but the Alarm model is explored. The Plant has started up and is in normal operation. In this plant multiple Condition handling schemes are illustrated, most plants would be more consistent and require all Conditions be handled in the same manner. The following Alarms have occurred

The flow sensor has been generating a low alarm, but it has been jumping in and out of low Alarm, the Operator investigated and determined that the sensor is broken. This Alarm needs to be disabled. The example will demonstrate the disabling of this Alarm.

The level control provides and example of a single level Alarm and the handshaking associated with the acknowledgement of it as it progresses through various Alarms. This Alarm requires all state transitions to be acknowledged.

The temperature controller provides and example of a multi-level Alarm and the handshaking associated with the acknowledgement of it as it progresses through various Alarms. This Alarm only requires the most resent Condition to be acknowledged

Lastly this example will illustrate the Alarm Client being restarted and requiring a Refresh operation.

[image: image53.emf]Types

LevelControlTag

 Type

LevelControl 101

SingleLevelAlarm

Type

SetPoint

MeasuredValue

HiAlarm

LowAlarm

LevelAlarmGroup

ConditionGroup

ConditionGroup

AlarmStatus

Type

SingleRateOfChangeAlarm

Type

HighRateAlarm

HasEventSource

ControlOutput

TempControl 101

Tank 1

TempControlTag

Type

HasNotifier

HasNotifier

SetPoint

MeasuredValue

ControlOutput

MultiLevelAlarm

Type

LowLowAlarm

LowAlarm

LevelAlarmGroup

ConditionGroup

ConditionGroup

AlarmStatus

Type

FlowSensor 101

Pipe 101

HasNotifier

Pump 101

HasNotifier

LowAlarm

SingleRateOfChangeAlarm

Type

PumpType

PipeType

FlowSensorType

Figure 46 - Alarm Condition Address space

[Need Refresh cycle in this example – need a Disable first for flow sensor that is always jumping between low and normal -
Subscription example

[image: image54]

Table XXXXX illustrate the Event stream that the Alarm display Client may receive (it contains comment line to help identify the actions that occurred, in this case the Client connect is broken for a short period and the Client must request a Refresh to ensure that it obtains anything that was missed). The events that occurred during the broken connect are also listed to help a person understand.

Table 133 - Alarm Example Event Stream Display Client

	Time
	Source
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Table XXXX2 illustrates the Event stream that the Audit log would have received over the same time period

Table 134 - Alarm Example Event Stream Audit Log Client

	Time
	Source
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Table XXXX3 illustrates the events that the third Client process would receive over the same time period

Table 135 - Alarm Example Event Stream Message Window Client

	Time
	Source
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

[image: image57.emf]Boiler1

Pipe1001

Drum1001

Pipe1002

FT1001

Valve1001

LI1001

FT1002

FlowTo

FlowTo

DataItem

DataItem

DataItem

DataItem

FC1001

LC1001

CC1001

ControlModule

Measurement

Measurement

ControlOut

ControlOut

Setpoint

Setpoint

Input1

Input2

Input3

ControlOut

Signal

Signal

Signal

Signal

Signal

Signal

Signal

Executes

Executes

Executes

Disabled

Enabled

Disabled

Enabled

Unconfirmed

Acknowledged

Confirmed

Unacknowledged

Acknowledged

Unacknowledged

Ack

By

Server

Acknowledge

 Method

Unacknowledged

Confirmed by Server

Confirm Method

Acknowledged

Acknowledged

Unconfirmed

Unacknowledged

Acknowledge By Server

Acknowledge Method

Confirmed

Disabled

Inactive

Enabled

Active

Suppressed

Unsuppressed

OK Method

Processed By Server

Accepting

Server restricts to Unconfirmed until Acknowledged

Inactive

Active

HighHigh

LowLow

High

Low

Unshelved

Shelved

Confirmed

Unconfirmed

OK Method

Processed By Server

Active

Inactive

Inactive

Active

Accepting

Rejecting

No Method

Processed By Server

Cancelling

Cancel Method

Processed By Server

LastComment

Disabled

CommentAdded

Enabled

Enabled

Disabled

SeverityChange

StatusChange

Figure � SEQ Figure * ARABIC �41� - Power Plant Sstem

>

ProcessAlarmType

OfType

400

Severity

and

� EMBED Visio.Drawing.11 ���

�Delete All TOC TOF TOT section - leave until edits complete since easier to find sections using it

�Todo for document:

-- Make sure all tables are referenced in text and have correct reference

-- Check overall formatting of entire document

-- Search for XXXXX and fill in the missing reference where ever they occur

More items for entire doc

- Check all audit events and make sure iheritence is correct and thatthey follow naming convention

Review all uses of StateMachineType vs FiniteStateMachineType - which do we want to inhertit from, the difference is that a Finite State Machine will exposeit state, verse a state machine does not

- I guess is that it will depend on the state machine (simple state machine don’t need to expose state complex ones do - should be reviewed by all

�What about severity?

Not a term ,but defined as part of baseevent

�Populate these table based on what is in this document

�Aspects missing in specification:

a. Alarm escalation: an alarm consists of an “EscalationLevel” attribute to signal that escalation is required. Furthermore the aspect of escalation strategies

PEH - - will add this

Is this something that is required or an optional sun state machine for the enable state machine - i.e. where does it go and does it always need to be there (my guess would be optional)

�Get updated sentence from Betsy

PEH - Done

�Add ref for figure and to description that comment is also part of state machine

PEH - Done

�Look up where severity is defined and make sure it is reference, the same for Status. Serverity is defined in part 5?

PEH - status is not really defined as such? Otherwise done

�Check figure make sure correct when complete

�May need to also add a section or paragraph describing the instance model and how the individual event are mapped back to the various functions

PEH Done

�Insert section here that include a description of how events are generated (i.e. batched together all changes and generate a single event - that all transitions in the batch must have the same time stamp for lasttranistiontime

Also include that a condition could generate an event that does not effect the lastevent (i.e. they are for an ack of a preivious event)

PEH - Done

�Separating ConditionType from BaseConditionType doesn’t seem to add any value. Should we simplilfy thing and combine them?

Peh - BaseCondition was defined to allow a place to derive conditions from that do not require a state machine

�Make sure not more sub type - also update all table as need for this type of reference (most are missing it

PEH - Done

�Add all of the defined sub types into here

�Review this once section are complete and see where it is actually used

�What is meant by this?

PEH - Good question - need to review status with respect to condition 9 since not really defined anywhere (thought it would have been in another part - but since not needs to be defined here)

�Fix the name of this in all places - needs a different event type - in this case it may be an event type that inherits from someplace else.

�Come up with a better sentence for this. - to long and wordy

PEH - Better?

�we shortly talked about the Dialogs and that there is a similar concept in

FDT.

The name of the FDT concept is "UserMessage". The basic idea is, that an

XML element defines the contents of the dialog - similar to the way of

defining messageboxes in the windows API.

The messageType defines the icon, there is a set of predefined

button-combinations, you may select the default button, provide dialog

title and help,

The dialog may display a number of Text lines as well as a number of

values. (pretty much depending on implementation of the GUI)

In FDT the same message (e.g. with updated data) is returned back to the

server..

I am attaching the XML schema : (See attached file:

FDTUserMessageSchema.xml)

and one example: (See attached file: FDTUserMessageInstance.xml)

Thomas Hadlich

<Schema name="FDTUserMessageSchema" xmlns="urn:schemas-microsoft-com:xml-data" xmlns:dt="urn:schemas-microsoft-com:datatypes" xmlns:fdt="x-schema:FDTDataTypesSchema.xml">

	<!--Definition of Attributes-->

	<AttributeType name="messageType" dt:type="enumeration" dt:values="messageExclamation messageInformation messageQuestion messageStop"/>

	<AttributeType name="messageButtons" dt:type="enumeration" dt:values="buttonsAbortRetryIgnore buttonsOk buttonsOkCancel buttonsRetryCancel buttonsYesNo buttonsYesNoCancel"/>

	<AttributeType name="messageDefault" dt:type="enumeration" dt:values="buttonAbort buttonRetry buttonIgnore buttonOk buttonCancel buttonYes buttonNo"/>

	<AttributeType name="resultMessage" dt:type="enumeration" dt:values="nobutton buttonAbort buttonRetry buttonIgnore buttonOk buttonCancel buttonYes buttonNo"/>

	<AttributeType name="resultStatus" dt:type="enumeration" dt:values="notSupported denied systemResponse ok"/>

	<AttributeType name="title" dt:type="string"/>

	<AttributeType name="helpFile" dt:type="string"/>

	<AttributeType name="helpContext" dt:type="number"/>

	<!-- ApplicationId specifies the standard user interface called -->

	<ElementType name="TextLine" content="mixed" model="closed">

		<attribute type="fdt:nodeId" required="no"/>

		<attribute type="fdt:string" required="yes"/>

	</ElementType>

	<ElementType name="FDTUserMessage" content="mixed" model="closed">

		<attribute type="fdt:nodeId" required="no"/>

		<attribute type="messageType" required="yes"/>

		<attribute type="messageButtons" required="yes"/>

		<attribute type="messageDefault" required="yes"/>

		<attribute type="title" required="yes"/>

		<attribute type="helpFile" required="no"/>

		<attribute type="helpContext" required="no"/>

		<group order="many">

			<element type="TextLine" minOccurs="0" maxOccurs="*"/>

			<element type="fdt:DtmVariable" minOccurs="0" maxOccurs="*"/>

		</group>

		<attribute type="resultMessage" required="no"/>

		<attribute type="resultStatus" required="no"/>

	</ElementType>

	<ElementType name="FDT" content="mixed" model="closed">

		<attribute type="fdt:nodeId" required="no"/>

		<element type="FDTUserMessage" minOccurs="1" maxOccurs="1"/>

	</ElementType>

</Schema>

<?xml version="1.0" encoding="UTF-8"?>

<FDT xmlns="x-schema:FDTUserMessageSchema.xml" xmlns:fdt="x-schema:FDTDataTypesSchema.xml">

	<FDTUserMessage messageType="messageQuestion" messageButtons="buttonsOkCancel" messageDefault="buttonCancel" title="Information">

		<TextLine fdt:string="Please give in your name:"/>

		<TextLine fdt:string="Please give in your name:"/>

		<fdt:DtmVariable name="strUser">

			<fdt:Value>

				<fdt:Variant dataType="ascii">

					<fdt:StringData string="New Name"/>

				</fdt:Variant>

			</fdt:Value>

		</fdt:DtmVariable>

		<TextLine fdt:string="(more than 2 characters needed)"/>

	</FDTUserMessage>

</FDT>

�Can we review the purpose of these transient states. I remember we concluded we needed them but looking at the model now it just seems to add unneeded complexity.

�Define

�Add standard text for figure and tables

�Where is AckTime? Did we push the time of transition into the base StateMachineType?

�Update to reflex that the state is not part of ack

�Updated to include transient states

PEH: Done

�Add text

� make sure text is correct

�From Betsy - should this methodinclude client id or should we just describe that a server should obtain client information from the call service? Something like””The process of Acknowledging a Condition usually requires the Server to report the client that is performing the acknowledgement. This client information is obtained from the Header associated with the call Service.

Note the Header currently only has a SessionAuthenticationToken, which mean that the server must be able to (internally) provide client information based on the Header Information. I’m not sure where this is covered, but it is concept that should be covered in general term not just here - it also applies to audit events for any of a number of action, not just a method call

�Move this into the alarm section since it only make sens e for alarms

�Fix standard text for figures and tables

�Updated to include transient states

�Editor’s ToDo

Complete this section

�Move this back to being in the alarm model

PEH - Why?

�Update text for entire section to match table and figures

�This doesn’t sound correct. I believe this should only apply the timedShelve method to indicate what the maximum time can be. Manual shelving should have no concept of time is it set until reset. Oneshot shelving is until the next alarm again no concept of time. Suppression is controlled by the server and again no need or this time.

PEH - I’m fine with this either way - the text was taken from the EEMUA manual (they state that no event should ever be shelved forever all should have a timeout - we made it optional since we did not think that was appropriate in all systems.)

�Remark from a software architect: I think the explicit distinction of three states for the three use cases for shelving is more confusing than adding value. The whole OPC UA concept is already complex enough!

PEH - State model issues, could change, but then may actually be harder to understand, since it really is three different states - could change the methods to have less of them and have the same method as a cause for all, but again to me that makes it harder to understand, just easier to implement maybe

�The term “ManualShelving” is not that ideal, because the definition of Shelving is “Manual Suppression”  thus, “ManualManualSuppression” I recommend to feature only one “Shelve” method with the options

a. “One shot”: Duration = 0 �“Timed”: Duration > 0 �“Infinite”: Duration = “-1” (or MAX_DURATION_VALUE”)

or use a second parameter “ShelvingMode” that could include a “UseDefaultDuration” as well if the alarm service already has a global default shelving duration. In this case, that parameter Duration is only valid for the ShelvingMode = “Timed”

PEH - Drop Manual - just leave it as shelve and updated in all place - also as part of definition of shelve add that a server may move to unshelve at some MAX_Duration

�Delete when in Part 5

�What is this variable for it has no browse name?

�What is this variable for it has no browse name?

�Make sure should is not used (or used only where it should be - search doc)

PEH - Done

�Fix/review make sure all process alarm state machine are list and in the correct higherarchy

�Move the MuliActiveStatemachine definition to here with an introduction section that describes that this is used in multiple places

�Move to common section

�Move to common section

�Fill in with states transitines etc.

�Should explain this - that it is a parent state

Discuss in the common section

PEH Done

�Add a section to the common section describing how this is done

Add that since it is optional for the level could eliminate some with out redefining

4 chosen since it is typical

�Finish and fix this up

�Delete this once it is in an example (such as a pump)

The GroupingId property of a condition instance of this type must be set to the NodeId of the instance of the LevelGroup variable that has been created as part of this alarm type. This allow a client to quickly and easily determine which variable is the variable associated with the grouped conditions.

�Create sub figure for common section

PEH - Done

�Add definition of this type - as subtype of analogItemtype

PEH - Done (actually a basedatatype sub type , but includes item from analogitemtype - analofitem type include more then is needed

�Move to common section

PEH - Done

�Fill in with states transitines etc.

PEH - DONE

�Should explain this - that it is a parent state

Discuss in the common section

�Add a section to the common section describing how this is done

Add that since it is optional for the level could eliminate some with out redefining

4 chosen since it is typical

PEH - Done

�What is this reference?

PEH - no reference any more jut a folder in the instance

�Will look at if we want to stick with the standard multiactivestatemachine or come up with a different one that has better names for the states

Should the low and lowlow be removed? I thin it is ok to leave them since they are optional .

�Replace with standard response type once it is defined in Part 5.

�Based on this review need to define some additional audit events - also need to updated all method to reference which Audit event it should generate on invocation. - restructure where the Audit event starts from

�Editor’s ToDo

Complete this section

�Include a description of the standard alarm model we expect servers to implement (state that a client should not refer to this since it is server specific, i.e. a server may not support the standard alarm model

�make sure example for subscriptions includes a filter that would allow the suppression

 and shelving events to be passed through but not the subsiquent events - explain why - so a client

�Add alarm information in here since they all have the same level of alaram support

�[Note: this type has nothing but collection point for items below it]

i.e references, a temperature sensor, a level sensor, the level controller and the temperature controller – act as notifier for these and also for the pipe

HasEventSource

HasNotfier

GeneratesEvent

�Make sure this is correct

�include ll column tht may be subscribed to and include thing like the method column(for ack methods)

�Create the filter images for each filter used in all of the examples - also provide all of the subscription parameters

�Look at including some other figure that would indicate what a browse of the address space may show with regards to events or the instance objects.

_1252391120.vsd
Object

ObjectType

Method

DataType

Variable

Asymmetric
Reference

Symmetric
Reference

Object

Asymmetric
Reference

Confirm

ConfirmedState MachineType

UnConfirmed: StateType

Confirmed: StateType

ToConfirmed: TransitionType

ToUnConfirmed: TransitinType

HasCause

ConfirmBy EventIds

HasCause

AcknowledgeState MachineType

ConditionState MachineType

StateMachineType

HasSubStateMachine

Confirm

AcknowledgeableConditionStateMachineType

Enabled: StateType

Acknowledge

HasSubStateMachine

_1253605658.vsd
Object

ObjectType

Method

DataType

Variable

Asymmetric
Reference

Symmetric
Reference

VariableType

Object

Asymmetric
Reference

CommentStateMachine
Type

LastComment: StateType

ToCommentAdded

HasCause

ConditionStateMachineType

CommentAdded:StateType

CommentBy EventIds

Comment

ClientUserID

StateMachineType

Enabled: StateType

Comment SubState

HasSubStateMachine

ToLastComment

AddComment

HasCause

_1257939995.vsd
Object

ObjectType

Method

DataType

Variable

Asymmetric
Reference

Symmetric
Reference

ConditionState MachineType

Disable

Enable

State

Retain

Disabled: StateType

Enabled: StateType

Condition Refresh

ToDisabled: TransitionType

ToEnabled: TransitionType

Condition
Type

HasCause

HasCause

Status

HasSubStateMachine

StatusState MachineType

BaseCondition
Type

CommentSubState

HasSubStateMachine

CommentState MachineType

StateMachine
Type

BaseEvent
Type

Severity State

SeverityState MachineType

HasSubStateMachine

_1290258921.vsd
Object

ObjectType

Method

DataType

Variable

Asymmetric
Reference

Symmetric
Reference

Asymmetric
Reference

Object

Low: StateType

High: StateType

MultiActive StateMachineType

LowLow: StateType

StateMachineType

HighHigh: StateType

HighHighToHigh: TransitionType

InactiveToHigh: TransitionType

HighToHighHigh: TransitionType

InactiveToHighHigh:TransitionType

LowToLowLow: TransitionType

LowToInactive: TransitionType

HighToInactive: TransitionType

HIghHighToInactive: TransitionType

InactiveToLow: TransitionType

LowLowToLow: TransitionType

InactiveToLowLow: TransitionType

LowLowToInactive: TransitionType

_1290261325.vsd
Object

ObjectType

Method

DataType

Variable

Asymmetric
Reference

Symmetric
Reference

Asymmetric
Reference

Object

State

ProcessAlarm
Type

LevelAlarm
Type

State

MultiActive StateMachineType

ActiveSubState

MultilevelAlarmActive StateMachineType

Active: StateType

HasSubstate

Level

HasSubStateMachine

Enabled: StateType

MultiLevelAlarm StateMachineType

AlarmActiveState MachineType

SingleLevel AlarmType

Active: StateType

MultipleLevel AlarmType

AcknowledgeableConditionStateMachineType

Enabled: StateType

ActiveSubState

HasSubStateMachine

ConditionState MachineType

StateMachineType

AlarmState MachineType

Enabled: StateType

Enabled: StateType

_1290288172.vsd
Object

ObjectType

Method

DataType

Variable

Asymmetric
Reference

Symmetric
Reference

Asymmetric
Reference

Object

State

ProcessAlarm
Type

DeviationAlarm
Type

State

MultiActive StateMachineType

ActiveSubState

MultiDeviationAlarm ActiveStateMachineType

Active: StateType

HasSubstate

Level

HasSubStateMachine

Enabled: StateType

MultiDeviationAlarm StateMachineType

AlarmActiveState MachineType

SingleDeviation AlarmType

Active: StateType

MultipleDeviation AlarmType

AcknowledgeableConditionStateMachineType

Enabled: StateType

ActiveSubState

HasSubStateMachine

ConditionState MachineType

StateMachineType

AlarmState MachineType

Enabled: StateType

Enabled: StateType

_1290311219.vsd
Seitlichen Ziehpunkt ziehen, um Breite des Textblocks zu ändern.

Text

Object

Reference
/ InverseName (optional)

Variable

Object

Reference
/ InverseName (optional)

Object

Reference
/ InverseName (optional)

Object

Variable

Variable:VariableType

Attribute
NodeId = 123
Description = „Something“

Property
MyProperty = 123
NodeVersion = 1

ReferenceType

Reference
/ InverseName (optional)

ObjectType

Reference
/ InverseName (optional)

Object

ObjectType

Method

Variable

ObjectType

VariableType

VariableType

Variable

ObjectType

Object

Object:ObjectType

Attribute
NodeId = 123
Description = „Something“

Property
MyProperty = 123
NodeVersion = 1

Reference
/ InverseName (optional)

Object

Variable

ObjectType

VariableType

Method

DataType

Asymmetric
Reference

Symmetric
Reference

View

ReferenceType

ObjectType

Asymmetric
Reference

VariableType

Object

VariableType

ObjectType

Object

Method

Variable

Pipe1001

FT1001

DataItem

Maintenance

HasNotifier

Sever

Area1

HasNotifier

Boiler2

HasNotifier

Attribute
EventNotifier = 1

Attribute
EventNotifier = 1

Boiler1

Attribute
EventNotifier = 1

BoilerArea

Attribute
EventNotifier = 1

HasNotifier

HasNotifier

MaintenanceType

BaseEventType

EventId

Time

MaintenanceEventType

GeneratesEvent

DataItem

Definition

ValuePrecision

InstrumentRange

EURange

EngineeringUnits

DataItem

DataItemType

ValuePrecision

AnalogType

EURange

EngineeringUnits

DiscreteType

Definition

ValuePrecision

InstrumentRange

EURange

EngineeringUnits

BoilerType

PipeX001

DrumX001

PipeX002

FTX001

ValveX001

LIX001

FTX002

FlowTo

FlowTo

DataItem

DataItem

DataItem

DataItem

FCX001

LCX001

CCX001

Measurement

Measurement

ControlOut

ControlOut

Setpoint

Setpoint

Input1

Input2

Input3

ControlOut

Signal

Signal

Signal

Signal

Signal

Signal

Signal

PipeX001

DrumX001

PipeX002

FTX001

ValveX001

LIX001

FTX002

FlowTo

FlowTo

DataItem

DataItem

DataItem

DataItem

BoilerType

FT Type

LI Type

Valve Type

UserDocumentation

Contact

CoolFeature

VersionNo

HasVendor

Vendor

Documentation

DataItem

Vendor FT Type

FieldDeviceType

Boiler1

Pipe1001

MaintenanceType

Maintenance

Pipe1002

FT1001

Valve1001

FT1002

Maintenance

DataItem

Maintenance

DataItem

DataItem

Maintenance

FieldDeviceType

FT Type

DataItem

Vendor FT Type

BaseEventType

EventId

Time

GeneratesEvent

CoolFeature

MaintenanceEventType

CoolFeature

Pipe1002

LI1001

Setpoint

Signal

Input1

CC1001

Executes

Signal

FT1001

Signal

Measurement

Signal

ControlOut

ControlModule

Signal

Signal

Setpoint

LC1001

DataItem

FlowTo

Pipe1001

ControlOut

Measurement

Signal

ControlOut

Drum1001

Input2

Input3

Executes

Executes

FlowTo

FT1002

FC1001

DataItem

Boiler1

Valve1001

DataItem

DataItem

StateMachineType

ProgramType

StartupProgramType

Start

Reset

Halt

State

Suspend

Resume

InputArguments

OutputArguments

BoilerType

AdvancedBoilerType

Startup

StateMachineDefinition

State

LevelAlarm

Inhibited

MustAck

State

Drum1001

LI1001

SingleLevelAlarmType

Inhibited

MustAck

State

DataItem

Attribute
DisplayName = “Pipe1001“
BrowseName = “PipeX001“

Attribute
DisplayName = “FT1001“
BrowseName = “FTX001“

BoilerType

PipeX001

FTX001

DataItem

Attribute
DisplayName = “FTX001“
BrowseName = “FTX001“

Attribute
DisplayName = “PipeX001“
BrowseName = “PipeX001“

Boiler1

Pipe1001

FT1001

DataItem

Boiler1

Pipe1001

Drum1001

Pipe1002

FT1001

Valve1001

LI1001

FT1002

FlowTo

FlowTo

DataItem

DataItem

DataItem

DataItem

FC1001

LC1001

CC1001

ControlModule

Measurement

Measurement

ControlOut

ControlOut

Setpoint

Setpoint

Input1

Input2

Input3

ControlOut

Signal

Signal

Signal

Signal

Signal

Signal

Signal

Executes

Executes

Executes

Root

Objects

Area1

Boiler2

Pipe1001

Drum1001

Pipe1002

FT1001

Valve1001

LI1001

FT1002

FlowTo

FlowTo

DataItem

DataItem

DataItem

DataItem

FC1001

LC1001

CC1001

ControlModule

Measurement

Measurement

ControlOut

ControlOut

Setpoint

Setpoint

Input1

Input2

Input3

ControlOut

Signal

Signal

Signal

Signal

Signal

Signal

Signal

Executes

Executes

Executes

Area1

xxx

xxx

xxx

xxx

xxx

xxx

PipeX001

DrumX001

PipeX002

FTX001

ValveX001

LIX001

FTX002

FlowTo

FlowTo

DataItem

DataItem

DataItem

DataItem

FCX001

LCX001

CCX001

Measurement

Measurement

ControlOut

ControlOut

Setpoint

Setpoint

Input1

Input2

Input3

ControlOut

Signal

Signal

Signal

Signal

Signal

Signal

Signal

BoilerType

Boiler1

Pipe1001

Drum1001

Pipe1002

FT1001

Valve1001

LI1001

FT1002

FlowTo

FlowTo

DataItem

DataItem

DataItem

DataItem

FieldDeviceType

FT Type

LI Type

Valve Type

DataItem

Vendor FT Type

UserDocumentation

VersionNo

HasVendor

Vendor

CoolFeature

Contact

Documentation

CoolFeature

_1290261086.vsd
Object

ObjectType

Method

DataType

Variable

Asymmetric
Reference

Symmetric
Reference

Asymmetric
Reference

Object

State

ProcessAlarm
Type

LevelAlarm
Type

State

MultiActive StateMachineType

ActiveSubState

MultilevelAlarmActive StateMachineType

Active: StateType

HasSubstate

Level

HasSubStateMachine

Enabled: StateType

MultiLevelAlarm StateMachineType

AlarmActiveState MachineType

SingleLevel AlarmType

Active: StateType

MultipleLevel AlarmType

AcknowledgeableConditionStateMachineType

Enabled: StateType

ActiveSubState

HasSubStateMachine

ConditionState MachineType

StateMachineType

AlarmState MachineType

Enabled: StateType

Enabled: StateType

_1285574983.vsd
ObjectType

Reference
/ InverseName (optional)

ObjectType

Condition
Type

AlarmCondition
Type

AcknowledgeState
Machine Type

DialogCondition
Type

ConfirmedState
Machine Type

RefreshRequired
Event Type

RefreshEnd
Event Type

ConditionState
Machine Type

Defined in [UA Part 5]

AlarmActiveState
Machine Type

BaseEvent
Type

Acknowledgeable
Condition Type

StateMachine
Type

RefreshStrart
Event Type

SystemEvent
Type

ShelvedState
Machine Type

SuppressState
Machine Type

AlarmState
Machine Type

AcknowledgeableConditionState
Machine Type

CommentState
Machine Type

StatusState
Machine Type

BaseCondition
Type

OKDialog
Type

AuditUpdateState EventType

AuditCondition EventType

AuditUpdateMethod EventType

AuditEventType

OKDialogState
Machine Type

_1258552692.vsd
ObjectType

Reference
/ InverseName (optional)

ObjectType

AuditUpdate StateEventType

AuditEventType

AuditNodeManagement EventType

AuditUpdate EventType

AuditAddNodes EventType

AuditSecurity EventType

AuditSession EventType

AuditChannel EventType

AuditAddReferences EventType

AuditDeleteNodes EventType

AuditOpenSecure ChannelEventType

AuditCloseSecure ChannelEventType

AuditDelete ReferencesEventType

AuditCertificate EventType

AuditActivateSessionEventType

AuditCreateSessionEventType

AuditCertificate EventType

AuditCertificate EventType

AuditCertificate EventType

AuditCertificate EventType

AuditUpdateMethod EventType

AuditHistory UpdateEventType

AuditHistoryValue UpdateEventType

AuditWrite UpdateEventType

AuditHistoryEvent UpdateEventType

AuditHistory DeleteEventType

AuditCancel EventType

AuditHistoryAtTime DeleteEventType

AuditHistoryEvent DeleteEventType

AuditHistoryRawModify DeleteEventType

AuditCertificate EventType

AuditCertificate EventType

Defined in [UA Part 5]

Defined in [Part 11]

AuditCondition EventType

AuditShelved EventTYpe

AuditAcknowledge EventType

AuditEnable EventType

AuditAcknowledge InstanceEventType

AuditAcknowledgeBy EventIdEventType

AuditConfirm EventType

AuditComment EventType

AuditCommentBy EventIdEventType

AuditComment InstanceEventType

AuditConfirmBy EventIdEventType

AuditConfirm InstanceEventTYpe

_1256365556.vsd
Object

ObjectType

Method

DataType

Variable

Asymmetric
Reference

Symmetric
Reference

Object

Asymmetric
Reference

Acknowledge

AcknowledgeState MachineType

Acknowledging :StateType

Acknowledged :StateType

ToAcknowledging :TransitionType

ToUnAcknowledge:TransitionType

HasCause

Confirm

ConfirmState MachineType

HasSubStateMachine

AcknowledgeableConditionStateMachineType

Enabled: StateType

Acknowledge

HasSubStateMachine

ConditionState MachineType

StateMachine Type

AcknowledgeByEventIds

HasCause

ToAcknowledge :TransitionType

UnAcknowledged:StateType

_1256365693.vsd
Object

ObjectType

Method

DataType

Variable

Asymmetric
Reference

Symmetric
Reference

Asymmetric
Reference

Object

HasSubStateMachine

HasSubStateMachine

SurpressState MachineType

ShelveState MachineType

Shelved

Suppressed

State

AlarmActive

Condition
Type

Acknowledgeable ConditionType

State

AlarmActiveState MachineType

AlarmCondition
Type

ConditionState MachineType

Acknowledgeable
Condition StateMachineType

Enabled: StateType

State

StateMachineType

SuppressedOrShelved

HasSubStateMachine

Enabled: StateType

AlarmState MachineType

Enabled: StateType

MaxTime Shelved

_1255872727.vsd
Object

ObjectType

Method

DataType

Variable

Asymmetric
Reference

Symmetric
Reference

Asymmetric
Reference

Object

ProcessAlarm
Type

OffNormal
AlarmType

DigitalAlarmType

ChangeOfState
AlarmType

Condition
Type

Acknowledgeable ConditionType

AlarmCondition
Type

TripAlarmType

_1256364936.vsd
Object

ObjectType

Method

DataType

Variable

Asymmetric
Reference

Symmetric
Reference

ConditionState MachineType

State

Enabled: StateType

Condition
Type

SeverityState

HasSubStateMachine

Severity StateMachineType

Change:
StateType

SeverityChange: TransitionType

LastSeverity

StateMachine Type

BaseCondition
Type

_1253618566.vsd
Object

ObjectType

Method

DataType

Variable

Asymmetric
Reference

Symmetric
Reference

Object

Asymmetric
Reference

State

ProcessAlarm
Type

RateOfChange AlarmType

AlarmActiveState MachineType

Active: StateType

AcknowledgeableConditionStateMachineType

Alarm Active

HasSubStateMachine

ConditionState MachineType

StateMachineType

AlarmState MachineType

Enabled: StateType

SingleRateOfChange AlarmType

MultipleRateOfChange AlarmType

AlarmCondition
Type

_1252410170.vsd
Object

ObjectType

Method

DataType

Variable

Asymmetric
Reference

Symmetric
Reference

VariableType

Object

Asymmetric
Reference

CommentPrevious StateMachineType

LastComment: StateType

ToCommentAdded

HasCause

ConditionStateMachineType

CommentAdded:StateType

CommentBy EventIds

Comment

ClientUserID

StateMachineType

Enabled: StateType

CommentPrevious SubState

HasSubStateMachine

ToLastComment

_1253365724.vsd
ObjectType

Method

Object

Asymmetric
Reference

Asymmetric
Reference

Object

Variable

HasSubStateMachine

AckPreviousRequired

HasSubStateMachine

AckPreviousRequiredStateMachineType

Condition StateMachineType

AcknowledgeableCondition StateMachineType

Enabled: StateType

StateMachineType

Enabled: StateType

Acknowledge

Acknowledge StateMachineType

HasSubStateMachine

RelatedEventId

Confirm

Confirm StateMachineType

ConfirmPrevious StateMachineType

ConfirmPrevious

HasSubStateMachine

_1253479195.vsd
Object

ObjectType

Method

DataType

Variable

Asymmetric
Reference

Symmetric
Reference

Object

Asymmetric
Reference

State

ProcessAlarm
Type

DeviationAlarm
Type

AlarmActiveState MachineType

Active: StateType

AcknowledgeableConditionStateMachineType

Alarm Active

HasSubStateMachine

ConditionState MachineType

StateMachineType

AlarmState MachineType

Enabled: StateType

SingleDeviation AlarmType

MultipleDeviation AlarmType

_1253482302.vsd
Object

ObjectType

Method

DataType

Variable

Asymmetric
Reference

Symmetric
Reference

Object

Asymmetric
Reference

State

ProcessAlarm
Type

LevelAlarm
Type

AlarmActiveState MachineType

Active: StateType

AcknowledgeableConditionStateMachineType

Alarm Active

HasSubStateMachine

ConditionState MachineType

StateMachineType

AlarmState MachineType

Enabled: StateType

SingleLevel AlarmType

MultipleLevel AlarmType

AlarmCondition
Type

_1253366211.vsd
Object

ObjectType

Method

DataType

Variable

Asymmetric
Reference

Symmetric
Reference

Asymmetric
Reference

Object

ProcessAlarm
Type

LevelAlarm
Type

Deviation AlarmType

RateOfChange AlarmType

Condition
Type

Acknowledgeable ConditionType

AlarmCondition
Type

SingleLevel AlarmType

MultipleLevel AlarmType

SingleDeviation AlarmType

MultipleDeviation AlarmType

SingleRateOf ChangeAlarmType

MultipleRateOf ChangeAlarmType

_1252438858.vsd
Object

ObjectType

Method

DataType

Variable

Asymmetric
Reference

Symmetric
Reference

Object

Asymmetric
Reference

OneShotShelve

ShelvedStateMachine
Type

TimedShelved: StateType

OneShotShelved: StateType

UnShelvedToTimedShelved: TransitionType

ManualShelvedToTimedShelved: TransitionType

HasCause

AcknowledgeableConditionStateMachineType

Enabled: StateType

AlarmShelved

HasSubStateMachine

ConditionStateMachineType

StateMachineType

AlarmStateMachineType

Enabled: StateType

Enabled: StateType

ManualShelvedToUnshelved: TransitionType

TimedShelvedToManualShelved: TransitionType

ManualShelved: StateType

UnShelved: StateType

UnShelvedToManualShelved: TransitionType

UnShelvedToOneShotShelved: TransitionType

TimedShelvedToUnshelved: TransitionType

OneShotShelvedToUnShelved: TransitionType

UnShelve

HasCause

HasCause

HasCause

TimedShelve

HasCause

HasCause

ManualShelve

HasCause

HasCause

HasCause

OneShotShelvedToManualShelved: TransitionType

TimedShelvedToOneShotShelved: TransitionType

ManualShelvedToOneShotShelved: TransitionType

HasCause

HasCause

OneShotShelvedToTimedShelved: TransitionType

HasCause

_1252397049.vsd
Object

ObjectType

Method

DataType

Variable

Asymmetric
Reference

Symmetric
Reference

ConditionState MachineType

State

Enabled: StateType

Condition
Type

Status

HasSubStateMachine

StatusState MachineType

Change:
StateType

StatusChange: TransitionType

StatusCode

StateMachine Type

BaseCondition
Type

_1251012022.vsd
ObjectType

Method

Object

Asymmetric
Reference

Asymmetric
Reference

Object

HasSubStateMachine

Dialog

OK

State

Inactive: StateType

Active: StateType

DialogCondition
Type

OKDialog
Type

ToActive: TransitionType

ToAccepting: TransitionType

HasCause

OKDialogSubState StateMachineType

ConditionStateMachineType

OKDialog StateMachineType

Enabled: StateType

State

StateMachineType

Accepting: StateType

ToInactive: TransitionTYpe

Enabled: StateType

_1251115948.vsd
Object

ObjectType

Method

DataType

Variable

Asymmetric
Reference

Symmetric
Reference

Object

Asymmetric
Reference

SurpressStateMachine
Type

ToUnsuppressed: TransitionType

ToSuppressed: TransitionType

AcknowledgeableConditionStateMachineType

Enabled: StateType

Alarm Suppress

HasSubStateMachine

ConditionStateMachineType

StateMachineType

AlarmStateMachineType

Enabled: StateType

Enabled: StateType

Suppressed: StateType

Unsuppressed: StateType

_1251116390.vsd
Object

ObjectType

Method

DataType

Variable

Asymmetric
Reference

Symmetric
Reference

Asymmetric
Reference

Object

Shelved

Tiimed
Shelved

Oneshot
Shelved

Unshelved

Manual Shelve call

UnShelve call

Timed Shelve call

Any Transition Occurs

One Shot Shelve call

Time Expired

UnShelve call

UnShelve call

Manual Shelve call

Manual Shelve call

Timed Shelve call

Timed Shelve call

One Shot Shelve call

One Shot Shelve call

_1251635763.vsd
Object

ObjectType

Method

DataType

Variable

Asymmetric
Reference

Symmetric
Reference

Asymmetric
Reference

Object

MultiActive StateMachine

AcknowledgeableConditionStateMachineType

ConditionState MachineType

StateMachineType

AlarmState MachineType

AlarmActiveState MachineType

MultiLevelAlarmActive StateMachineType

MultiLevelAlarm StateMachineType

MultiDeviationAlarm StateMachineType

MultiRateOfChange AlarmStateMachineType

MultiDeviationAlarmActive StateMachineType

MultiRateOfChangeAlarm ActiveStateMachineType

_1251115138.vsd
Object

ObjectType

Method

DataType

Variable

Asymmetric
Reference

Symmetric
Reference

Object

Asymmetric
Reference

AlarmActiveStateMachine
Type

Inactive: StateType

Active: StateType

ToActive: TransitionType

Toinactive: TransitionType

AcknowledgeableConditionStateMachineType

Enabled: StateType

AlarmActive

HasSubStateMachine

ConditionStateMachineType

StateMachineType

AlarmStateMachineType

Enabled: StateType

Enabled: StateType

_1246793214.vsd
ObjectType

Method

Object

Asymmetric
Reference

YesNoCancelDialog StateMachineType

OKCancelDialogSubState StateMachineType

BaseCondition
Type

Condition
Type

OKCancelDialogSubState StateMachineType

DialogCondition
Type

OKCancelDialog
Type

YesNoCancelDialog
Type

OKDialog
Type

OKDialogSubState StateMachineType

OKCancelDialogStateMachineType

ConditionStateMachineType

OKDialog StateMachineType

BaseEvent
Type

StateMachineType

State

_1248008409.vsd
ObjectType

Method

Object

Asymmetric
Reference

Asymmetric
Reference

Object

HasSubStateMachine

Dialog

OK

State

Inactive: StateType

Active: StateType

DialogCondition
Type

OKCancelDialog
Type

ToActive: TransitionType

ToAccepting: TransitionType

HasCause

OKCancelDialogSubState StateMachineType

ConditionStateMachineType

OKCancelDialog StateMachineType

Enabled: StateType

State

StateMachineType

Cancel

Cancelling: StateType

HasCause

Accepting: StateType

ToCancelling: TransitionType

ToInactive: TransitionType

Enabled: StateType

_1248010857.vsd
ObjectType

Method

Object

Asymmetric
Reference

Asymmetric
Reference

Object

Variable

State

Condition
Type

Acknowledgeable ConditionType

ConditionStateMachineType

AcknowledgeableCondition StateMachineType

Enabled: StateType

State

StateMachineType

Enabled: StateType

AckPrevious

RelatedEventId

_1248587502.vsd
Object

ObjectType

Method

DataType

Variable

Asymmetric
Reference

Symmetric
Reference

BaseCondition
Type

AcknowledgeableCondition Type

BaseEvent
Type

AcknowledgeState MachineType

State

AckPreviousState MachineType

ConditionType

ConditionStateMachine Type

StateMachine
Type

ConfirmState MachineType

AcknowledgebleCondition StateMachineType

_1248009509.vsd
ObjectType

Method

Object

Asymmetric
Reference

Asymmetric
Reference

Object

HasSubStateMachine

Dialog

OK

State

Inactive: StateType

Active: StateType

DialogCondition
Type

YesNoCancelDialog
Type

ToActive: TransitionType

ToAccepting: TransitionType

HasCause

YesNoCancelDialogSubState StateMachineType

ConditionStateMachineType

YesNoCancelDialog StateMachineType

Enabled: StateType

State

StateMachineType

Cancel

ToCancelling: TransitionType

HasCause

No

ToRejecting: TransitionType

HasCause

Accepting: StateType

Cancelling: StateType

Rejecting: StateType

ToInactive: TransitionType

Enabled: StateType

_1248005751.vsd
Object

ObjectType

Method

DataType

Variable

Asymmetric
Reference

Symmetric
Reference

Asymmetric
Reference

AckPreviousStateMachine
Type

Inactive: StateType

Active: StateType

ToInactive: TransitionType

ToActive: TransitionType

ConditionStateMachineType

StateMachineType

AcknowledgeableConditionStateMachineType

Enabled: StateType

AckPrevious Required

HasSubStateMachine

_1245496069.vsd
ObjectType

View

Object

Type Model

MyTypes Folder

SensorType

FlowSensorType

LevelSensorType

TemperatureSensor Type

_1245496220.vsd
ObjectType

View

Object

TankType

Type Model

MyTypes Folder

PumpType

PipeType

_1245496846.vsd
ObjectType

View

Object

BaseEvent
Type

Condition
Type

Acknowledgeable
Condition Type

Standard UA Types

RefreshStrart
Event Type

SystemEvent
Type

RefreshRequired
Event Type

RefreshEnd
Event Type

AlarmCondition
Type

DialogCondition
Type

StateMachine
Type

AcknowledgeStateMachineType

ConfirmedStateMachineType

ConditionStateMachineType

AlarmActiveStateMachineType

AlarmInhibitedStateMachineType

ManualInhibitStateMachineType

SystemInhibitStateMachineType

AlarmStateMachineType

AcknowledgeableConditionState
MachineType

CommentStateMachineType

StatusStateMachineType

AuditEventType

AuditUpdateStateEventType

BaseCondition
Type

ConditionEnableAuditEventType

OKDialog
Type

OkDialogStateMachineType

OkCancelDialogStateMachine Type

OKCancelDialog
Type

YesNoCancelDialog
Type

YesNoCancelDialogState
Machine Type

AcknowledgeAudit EventType

ConfirmedAudit EventType

LevelControlTag
 Type

TemperatureControl TagType

TankType

Type Model

BaseTypes Folder

MyTypes Folder

PumpType

SensorType

FlowSensorType

LevelSensorType

TemperatureSensor Type

PipeType

_1244968014.vsd
ObjectType

View

Object

LevelControlTag
 Type

TemperatureControl TagType

TankType

Type Model

MyTypes Folder

PumpType

SensorType

FlowSensorType

LevelSensorType

TemperatureSensor Type

PipeType

_1245157537.vsd
ObjectType

View

Object

LevelControlTag
 Type

TemperatureControl TagType

Type Model

MyTypes Folder

_1238917348.vsd
ObjectType

Reference
/ InverseName (optional)

ObjectType

Object

Variable

Symmetric
Reference

VariableType

Pump 101

LevelControl 101

HasNotifier

Rapid Start

PumpType

SingleLevelAlarm Type

PipeType

Types

AlarmStatus
Type

SingleRateOfChangeAlarm Type

LevelControlTag
 Type

TempControl 101

Tank 1

TempControlTag Type

HasNotifier

OKCancelDialog
Type

YesNoCancelDialog
Type

Pipe 101

HasNotifier

Auto

_1238922391.vsd
ObjectType

Reference
/ InverseName (optional)

ObjectType

Object

Variable

Symmetric
Reference

VariableType

SetPoint

LevelControl 101

MeasuredValue

TemperatureAlarm Group

LevelAlarmGroup

SingleLevelAlarm Type

AlarmStatus
Type

SingleRateOfChangeAlarm Type

ControlOutput

LevelControlTag
 Type

TempControl 101

Tank 1

TempControlTag
Type

HasNotifier

HasNotifier

SetPoint

MeasuredValue

ControlOutput

MultiLevelAlarm Type

Pipe 101

Level Sensor 101

Temerature Sensor 101

FlowSensor 101

LevelSensorType

TemperatureSensor Type

FlowSensorType

PumpType

HasNotifier

HasNotifier

Types

OKCancelDialog
Type

YesNoCancelDialog
Type

Pump 101

PipeType

_1238915805.vsd
ObjectType

Reference
/ InverseName (optional)

ObjectType

Object

Variable

Symmetric
Reference

VariableType

SetPoint

LevelControl 101

MeasuredValue

HiAlarm

LowAlarm

LevelAlarmGroup

SingleLevelAlarm Type

ConditionGroup

ConditionGroup

AlarmStatus
Type

SingleRateOfChangeAlarm Type

HighRateAlarm

HasEventSource

ControlOutput

LevelControlTag
 Type

TempControl 101

Tank 1

TempControlTag Type

HasNotifier

HasNotifier

SetPoint

MeasuredValue

ControlOutput

MultiLevelAlarm Type

LowLowAlarm

LowAlarm

LevelAlarmGroup

ConditionGroup

ConditionGroup

AlarmStatus
Type

FlowSensor 101

Pipe 101

HasNotifier

Pump 101

LowAlarm

SingleRateOfChangeAlarm Type

HasNotifier

PumpType

PipeType

Types

FlowSensorType

